
The abstract Lebesgue integral

The point of this note is to define the abstract Lebesgue integral and to derive its
basic properties with as little fuzz as possible.

The reader is assumed to already know what measurable spaces and measur-
able functions are. The note should be readable in principle without any previous
knowledge of the abstract Lebesgue integral (nor indeed the one on the real line),
but as no motivation is provided, it may prove tough going.

Throughout this note, a fixed measure space (Ω,F,µ) is given. All functions are
supposed to take their values in the extended real line [−∞,∞]. We do not bother
with complex functions, as this represent a rather trivial extension of the integral.1

First, a bit of handy notation:
The Iverson bracket (or indicator bracket) [· · ·] has the value 1 if the statement

inside the brackets is true, and 0 otherwise. For example, if f : Ω→R is given, then

[ f (x) > a] =
{

1 if f (x) > a,

0 otherwise.

The characteristic function (or indicator function) of a set A is commonly written
as χA , but I shall use the symbol [A] instead.

It can be defined in terms of the Iverson bracket by the mysterious looking
formula

[A](x) = [x ∈ A].

Note carefully that the square brackets on the left denote a function, while the one
on the right denote either 0 or 1 (depending on x).

Be warned that this notation highly non-standard, and should be explained carefully
whenever you use it.

As an example, convince yourself that
[

f −1((a,∞))
]
(x) = [ f (x) > a].

1This note started life as a supplementary note for the course TMA4225 Foundations of analysis.
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Integral of simple functions

A simple function is a function that can be written

n∑
i=1

ai [Ai ]

where ai ∈ R and Ai ∈F for each i ∈ {1, . . . ,n}. Equivalently, it is just a measurable
function which takes only a finite number of different values.

We want to define the integral of a simple function:∫
Ω

n∑
i=1

ai [Ai ]dµ=
n∑

i=1
aiµ(Ai ).

We need to show that this is well defined, since the same simple function can be
written in many different ways. (For example, the sets Ai need not be mutually
disjoint.)

For this, the following lemma suffices (exercise: convince yourself of this):

1 Lemma If
n∑

i=1
ai [Ai ] = 0 then

n∑
i=1

µ(Ai ) = 0.

Proof: Define the function α : Ω→ {0,1}n by

α(ω) = (
[ω ∈ A1], . . . , [ω ∈ An]

)
,

and note that the kth component function of α is [Ak ]. For any β ∈ {0,1}n , put

Bβ = {ω ∈Ω : α(ω) =β}.

Now Ai is a disjoint union of those Bβ for which βi = 1, so we find

n∑
i=1

aiµ(Ai ) =
n∑

i=1
ai

∑
β∈{0,1}n

µ(Bβ) [βi = 1]

= ∑
β∈{0,1}n

µ(Bβ)
n∑

i=1
ai [βi = 1]︸ ︷︷ ︸

v(β)

.

Now we note that if ω ∈ Bβ then [βi = 1] = [ω ∈ Ai ] = [Ai ](ω), so the sum denoted
v(β) at the end of the calculation above is zero by the assumption of the lemma.
Thus for every β, either v(β) = 0 or Bβ = ;, so in any case µ(Bβ)v(β) = 0, and
summing this over β ∈ {0,1}n , we arrive at the conclusion of the lemma.

Thus we have shown that the integral is well defined for simple functions.
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It is now obvious that the integral
∫
Ωϕdµ is linear function of the simple func-

tion ϕ, and that
∫
Ωϕdµ ≥ 0 if ϕ ≥ 0 (because ϕ can be written as a sum

∑
ak [Ai ]

with all ai ≥ 0).

Integral of nonnegative functions

Whenever f : Ω→ [0,∞] is a measurable function, we define its integral to be∫
Ω

f dµ= sup
{∫
Ω
ϕdµ : 0 ≤ϕ≤ f and ϕ is a simple function

}
In the proof of the following theorem, we need the obvious fact that f ≤ g implies∫
Ω f dµ≤ ∫

Ω g dµ.

2 Theorem (Monotone convergence theorem, MCT) Assume that 0 ≤ f1 ≤ f2 ≤
f3 ≤ ·· · are Lebesgue measurable functions, and let

f (x) = lim
k→∞

fk (x).

Then ∫
Ω

f dµ= lim
k→∞

∫
Ω

fk dµ.

Proof: First, note that
(∫
Ω fk dµ

)
is a non-decreasing sequence, so it does have a

limit. Also fk ≤ f , so
∫
Ω fk dµ≤ ∫

Ω f dµ. Taking the limit, we conclude

lim
k→∞

∫
Ω

fk dµ≤
∫
Ω

f dµ.

It remains to prove the opposite inequality.
Take any simple function ϕ with 0 ≤ϕ≤ f , and write

ϕ=
n∑

i=1
ai [Ai ]

where the sets Ai are mutually disjoint, and ai > 0. Thus ϕ(ω) = ai when ω ∈ Ai .
Further, let α be any real number with 0 <α< 1.

Now fix an index i , and note that the sets

{ω ∈ Ai : fk (ω) >αai }, k = 1,2, . . .

form a non-decreasing sequence of subsets of Ai (since the fk form a non-decreasing
sequence of functions) whose union is all of Ai (since fk → f ≥ ai > αai on Ai ),
and that these sets are all measurable (since each fk is measurable). Thus

lim
k→∞

µ
(
{ω ∈ Ai : fk (ω) >αai }

)=µ(Ai ),
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and we get (using that pairwise disjointness means the sum in the first line is ≤ 1)

lim
k→∞

∫
Ω

fk dµ≥ lim
k→∞

∫
Ω

fk

n∑
i=1

[Ai ]dµ

=
n∑

i=1
lim

k→∞

∫
Ω

fk [Ai ]dµ

≥
n∑

i=1
lim

k→∞

∫
Ω

fk [Ai ] [ fk >αai ]dµ

≥
n∑

i=1
lim

k→∞

∫
Ω
αai [Ai ] [ fk >αai ]dµ

=
n∑

i=1
lim

k→∞
αaiµ

(
{ω ∈ Ai : fk (ω) >αai }

)
=

n∑
i=1

αaiµ(Ai ) =α
∫
Ω
ϕdµ.

Since α ∈ (0,1) was arbitrary, we conclude

lim
k→∞

∫
Ω

fk dµ≥
∫
Ω
ϕdµ,

and using the definition of the integral we arrive at the desired conclusion.

Fatou’s lemma

3 Lemma (Fatou’s lemma) Let fk ≤ 0 be measurable for each k ∈N. Then∫
Ω

lim
k→∞

fk dµ≤ lim
k→∞

∫
Ω

fk dµ.

The limit inferior on the left is to be taken pointwise: The value of the left integrand at a
point ω is taken to be lim

k→∞
fk (ω).

Proof: Let
gk (ω) = inf

i≥k
fk (ω).

Then gk ↗ lim
k→∞

fk , so the monotone convergence theorem gives

∫
Ω

lim
k→∞

fk dµ= lim
k→∞

∫
Ω

gk dµ.

Now just note that gk ≤ fk in order to complete the proof.

Additivity of the integral

The integral of a nonnegative function f clearly satisfies
∫
Ω a f dµ = a

∫
Ω f dµ for

any constant a ≥ 0. However, additivity is far less obvious. We need the following:
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4 Lemma If f ≥ 0 is a measurable function then there exists a sequence of simple
functions ϕk ≥ 0 so that ϕk ↗ f pointwise.

Proof: For any k ∈N and i ∈ {1,2, . . . ,2k k}, let aki = 2−k i , and set

ϕk =
2k k−1∑

i=1
aki [Aki ], Aki = {ω ∈Ω : aki ≤ f (ω) < ak(i+1)}.

The important things to note are:
– for any k, the sets Aki are disjoint
– for any k, 0 ≤ϕk ≤ f
– for any k and ω, if f (ω) < k then ϕ(ω) ≥ f (ω)−2k

– [aki , ak(i+1)) = [a(k+1)(2i ), a(k+1)(2i+1))t[a(k+1)(2i+1), a(k+1)(2i+2)) (heret indicates
disjoint union), and so Aki = A(k+1)(2i ) t A(k+1)(2i+1), from which we conclude
ϕk ≤ϕk+1

These are sufficient to complete the proof.
Now we can prove:

5 Proposition If f and g are nonnegative measurable functions then∫
Ω

( f + g )dµ=
∫
Ω

f dµ+
∫
Ω

g dµ.

Proof: Pick nonnegative simple ϕk and γk with ϕk ↗ f and γk ↗ g ; then ϕk +
γk ↗ f + g , and ∫

Ω
(ϕk +γk )dµ=

∫
Ω
ϕk dµ+

∫
Ω
γk dµ.

Now let k →∞ and apply the monotone convergence theorem to each integral.

Integrating general functions

Any measurable function f can be written as a difference of nonnegative measur-
able functions: f = f +− f − where

f +(ω) =
{

f (ω) f (ω) > 0,

0 otherwise,
f −(ω) =

{
− f (ω) f (ω) < 0,

0 otherwise.

(note that f − = (− f )+).
We would like to define∫

Ω
f dµ=

∫
Ω

g dµ−
∫
Ω

h dµ

if g ≥ 0 and h ≥ 0 are any measurable functions with f = g −h, but then we need
to show that is well defined. This turns out to be easy: If f = g1 −h1 = g2 −h2 with
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g1 ≥ 0, h1 ≥ 0, g2 ≥ 0, and h2 ≥ 0, then g1 +h2 = g2 +h1, so the additivity results for
nonnegative integrands yields∫

Ω
g1 dµ+

∫
Ω

h2 dµ=
∫
Ω

g2 dµ+
∫
Ω

h1 dµ,

which we rearrange into∫
Ω

g1 dµ−
∫
Ω

h1 dµ=
∫
Ω

g2 dµ−
∫
Ω

h2 dµ,

showing that this is indeed well defined.
However, this argument may break down if some integrals are infinite, since

we cannot meaningfully perform the subtraction ∞−∞.
We define f to be integrable if it is measurable with

∫
Ω| f |dµ < ∞. Then the

integrals of f ± are also finite, and the above procedure works.
We can also define the integral of f if just one of the two integrals

∫
Ω f ± dµ is finite.

This generality is rarely needed, but easily handled.

It is now not difficult to show that
∫
Ω f dµ is a linear function of f for integrable

f .

Dominated convergence

6 Theorem (Dominated convergence theorem, DCT) Assume that fk → f point-
wise, where all functions are measurable. Also assume that | fk | ≤ g for all k, where
g is an integrable function. Then∫

Ω
f dµ= lim

k→∞

∫
Ω

fk dµ.

Proof: We apply Fatou’s lemma to both sequences g ± fk , noting that these are
nonnegative, and also that g ± fk → g ± f :∫

Ω
(g ± f )dµ≤ lim

k→∞

∫
Ω

(g ± fk )dµ

We subtract the integral of g from both sides. With the plus sign, we conclude∫
Ω

f dµ≤ lim
k→∞

∫
Ω

fk dµ,

and with the minus sign, we multiply by −1 and conclude∫
Ω

f dµ≥ lim
k→∞

∫
Ω

fk dµ.

Together, these two inequalities complete the proof.
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