
Convexity in Complex Geometry

Xu Wang

ABSTRACT. These notes were written for the "Advanced Complex Analysis" course at NTNU.
We shall partially follow [H1] and mainly concentrate on the notion of convexity in complex
geometry.
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The study of convexity in complex geometry has found many applications in other fields of
mathematics. The followings are some selected applications of one crucial result (the Ohsawa-
Takegoshi extension theorem) in the convexity theory.
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1: Suita conjecture. Bergman kernel and Green function are crucial notions in complex
analysis. For the unit disk D in C, we have

KD(z) =
1

π(1− |z|2)2
, GD(z, w) = log

∣∣ z − w
1− w̄z

∣∣.
Hence

log(πKD(z)) = 2 lim
w→z
{GD(z, w)− log |z − w|}.

The Suita conjecture is the following inequality:

(0.1) log(πKΩ(z)) ≥ 2 lim
w→z
{GΩ(z, w)− log |z − w|},

where Ω is an arbitrary (smoothly bounded) domain in C. This conjecture is solved and general-
ized by Blocki [Bl] and Guan-Zhou [GZ] using the following version of the Ohsawa-Takegoshi
extension theorem [OT, BL]: for every given z0 ∈ Ω there exists a holomorphic function f on Ω
with f(z0) = 1 and ∫

Ω

|f(x+ iy)|2dxdy ≤ lim sup
t→−∞

e−t
∫
G<t

dxdy

for every non-positive G on Ω with G(z)− 2 log |z − z0| subharmonic on Ω.

Exercise 1: show that (0.1) follows if we take G(z) = 2GΩ(z, z0).

2: Strong openness conjecture. Let φ be a plurisubharmonic function on a neighborhood
of the origin in Cn and F be a holomorphic function near the origin. Assume that |F |2e−φ is
integrable near the origin then Demailly and Kollar [DK] conjecture that |F |2e−pφ is integrable
near the origin for some p > 1. This conjecture is a well known fact in case n = 1. For general
n with F = 1, it is solved by Berndtsson [B3]. The most general case is proved by Guan-Zhou
[GZ0] using the Ohsawa-Takegoshi extension theorem.

3: Corona problem. Another application of the Ohsawa-Takegoshi extension theorem is the
Skoda L2-division theorem [D, page 58]: Let g := (g1, · · · , gr) be r holomorphic functions on
the unit ball B in Cn with |g|2 := |g1|2 + · · · |gr|2 ≥ 1 on B. Set m = min{n, r − 1}. Then for
every ε > 0 there exist holomorphic functions (h1, · · · , hr) on B such that

(0.2) g1h1 + · · ·+ grhr = 1

and ∫
B
|h|2|g|−2(m+ε)dλ ≤

(
1 +

m

ε

) πn
n!
,

where dλ denotes the Lebesgue measure. In case n = 1, Carleson [C] proved that there also exist
bounded holomorphic functions (h1, · · · , hr) on B satisfying (0.2). Finding bounded holomor-
phic solution of (0.2) is known as the Corona problem. It is still an open problem for n ≥ 2.

4: Bernstein-Kushnirenko theorem. The fourth application of the Ohsawa-Takegoshi exten-
sion theorem is the Bergman kernel asymptotic formula, which implies the following formula:

(0.3) lim
m→∞

dimH0(X,mL)

mn/n!
= #{x ∈ X : f1(x) = · · · = fn(x) = 0},
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(see [B10, page 40])where L is an ample line bundle over an n-dimensional compact complex
manifold X and fj , 1 ≤ j ≤ n, are generic holomorphic sections of L. In case X and L are
defined by a Delzant polytope P , (0.3) implies the Bernstein-Kushnirenko theorem (which holds
true for a general convex polytope P in Rn with integral vertices, see [Be, KK]):

(0.4) n!|P | = #{z ∈ (C∗)n : f1(z) = · · · = fn(z) = 0},
for generic f1, · · · , fn ∈

{∑
u∈P∩Zn cuz

u : cu ∈ C
}

, where |P | denotes the volume of P .

5: Bourgain-Milman theorem. The final application of the Ohsawa-Takegoshi extension
theorem that I want to mention is the Berndtsson’s subharmonicity of the Bergman kernel [B06,
B09], which implies the Bourgain-Milman theorem [BM, B21]:

(0.5) |K| · |K◦| ≥ (1.604)−n
πn

n!
,

where K denotes the unit ball of a norm || · || on Rn, i.e.

K = {x ∈ Rn : ||x|| ≤ 1},
K◦ denotes the unit ball of the dual norm, i.e.

K◦ = {y ∈ Rn : x · y ≤ 1, ∀ x ∈ K}.
The famous Mahler conjecture (still open in case n ≥ 4) says that (0.5) still holds true if we
change the right hand side to 4n/n! (lecture on Tuesday, 22th August, week 34).

1. CONVEX ANALYSIS BACKGROUND

1.1. Convex set and convex function.

Definition 1.1. Let
φ : A→ R

be a function on a non-empty open set A ⊂ Rn. We say that A is convex if

tx+ (1− t)y ∈ A, ∀ x, y ∈ A, 0 < t < 1.

Assume that A is convex, we say that φ is convex if

(1.1) φ (tx+ (1− t)y) ≤ tφ(x) + (1− t)φ(y) ∀ x, y ∈ A, 0 < t < 1.

Lemma 1.1. φ : A→ R (A is convex) is convex if and only if

(1.2)
φ(ty + x)− φ(x)

t
is increasing in t when x, x+ ty ∈ A and t 6= 0.

Proof. Notice that (1.1) is equivalent to

φ((1− t)(y − x) + x)− φ(x)

1− t
≤ φ(y − x+ x)− φ(x)

1
.

Write (y − x) = sz, the above inequality gives

φ((1− t)sz + x)− φ(x)

(1− t)|s|
≤ φ(sz + x)− φ(x)

|s|
.
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Hence (1.1) is equivalent to (1.2) with t > 0 or t < 0. But since (1.1) also gives
φ(ty + x)− φ(x)

t
≥ φ(−ty + x)− φ(x)

−t
, t > 0.

We know that (1.1) is equivalent to (1.2). �

Proposition 1.2. Assume that φ is smooth. Then φ is convex if and only if the Hessian matrix
(φjk) is positive semi-definite.

Proof. Notice that (1.2) implies that the derivative of

ψ(t) := φ(ty + x)

is increasing. Thus if φ is smooth and convex then

ψtt(0) =
∑

φjk(x)yjyk ≥ 0.

On the other hand, if (φjk) is positive semi-definite then ψtt ≥ 0 for all t such that ty + x ∈ A,
which implies that

d

dt

(
φ(ty + x)− φ(x)

t

)
=

d

dt

∫ 1

0

ψ′(ts)ds =

∫ 1

0

ψ′′(ts)sds ≥ 0,

hence (1.2) follows. �

Proposition 1.3. Let φ be a convex function on a non-empty open set A ⊂ Rn. Then φ is locally
Lipschitz continuous.

Proof. We shall follow the proof of Hörmander in [H2, Theorem 2.1.22, page 55]. For every
finite set X := {x1, · · · , xN} in A, let us denote by ch(X) its convex hull, then using (1.1)
inductively we have

sup
X
φ = sup

ch(X)

φ.

Let K be a compact subset of A. Fix ε > 0 such that

Kε := {z ∈ Rn : |z − x| ≤ ε for some x ∈ K} ⊂ A.

Since A is convex, we can find X such that Kε ⊂ ch(X). In particular

x+ y, x− y ∈ ch(X), ∀ x ∈ K, |y| ≤ ε,

which gives

φ(x)− sup
X
φ ≤ φ(x)− φ(x− y); φ(x+ y)− φ(x) ≤ sup

X
φ− φ(x).

Notice that (1.2) implies
φ(−y + x)− φ(x)

−1
≤ φ(ty + x)− φ(x)

t
≤ φ(y + x)− φ(x)

1

for every −1 < t < 1, hence∣∣φ(ty + x)− φ(x)

t

∣∣ ≤ |φ(x)− sup
X
φ|,

from which we know that φ is locally Lipschitz continuous (in particular, φ is continuous). �
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Remark. The above proof in fact implies that

|φ(x)− φ(y)| ≤ L |x− y|, ∀ x, y ∈ K.

where L :=
supKε

φ−infK φ

ε
<∞ since φ is proved to be continuous (lecture on 25th August).

1.2. Brunn-Minkowski inequality and isoperimetric inequality.

Theorem 1.4 (Brunn-Minkowski inequality). Let A1, A2 be bounded non-empty convex open
sets in Rn. Then

|A1 + A2|
1
n ≥ |A1|

1
n + |A2|

1
n ,

where A1 + A2 := {x+ y : x ∈ A1, y ∈ A2} denotes the Minkowski sum.

Exercise 2: Show that the Brunn-Minkowski inequality is equivalent to that for every bounded
non-empty convex open sets A1, A2 in Rn: −|tA1 + (1− t)A2|

1
n is convex in t ∈ (0, 1).

Remark: In case A1 = A has smooth boundary and A2 = sB, where B is the unit ball and s is
a small positive number, the Brunn-Minkowski inequality gives

|A+ sB|
1
n ≥ |A|

1
n + |sB|

1
n = |A|

1
n + s|B|

1
n ,

which implies

lim
s→0+

|A+ sB| 1n − |A| 1n
s

≥ |B|
1
n .

On the other hand, if we put f(s) = |A+ sB| then

f ′(0+) = |∂A|,

where |∂A| denotes the (n− 1)-dimensional volume of the boundary ∂A of A. Hence

lim
s→0+

|A+ sB| 1n − |A| 1n
s

= (f 1/n)′(0+) =
1

n
f (1−n)/n(0)f ′(0+) =

|∂A|
n|A|(n−1)/n

,

and we have
|∂A|

n|A|(n−1)/n
≥ |B|

1
n .

Note that |∂B| = n|B|, the above inequality gives the following classical isoperimetric inequality
for convex sets.

Isoperimetric inequality. Let A be a smoothly bounded convex open set in Rn. Then

|∂A|
|A|(n−1)/n

≥ |∂B|
|B|(n−1)/n

.
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1.3. Legendre transform, gradient map and convex exhaustion functions.

Definition 1.2 (Legendre transform). Let ψ be a convex function on a bounded non-empty convex
open set A ⊂ Rn. We call

ψ∗(y) := sup
x∈A

x · y − ψ(x), x · y :=
n∑
j=1

xjyj,

the Legendre transform of ψ (with respect to A).

Proposition 1.5. Let ψ be a smooth strictly convex exhaustion function on a bounded non-empty
convex open set A ⊂ Rn (exhaustion means that ψ tends to infinity at the boundary of A, more
precisely, it means that for every c ∈ R, the closure of {ψ < c} is a bounded subset of A; strictly
convex means that the Hessian matrix is positive definite). Then its Legendre transform ψ∗ is
also smooth, strictly convex, moreover the gradient map of ψ∗

(1.3) ∇ψ∗ : y 7→ x = ∇ψ∗(y) := (∂ψ∗/∂y1, · · · , ∂ψ∗/∂yn),

defines a diffeomorphism from Rn onto A.

Proof. It is enough to prove that the gradient map of ψ defines a diffeomorphism from A to Rn,
ψ∗ is smooth and∇ψ∗ is the inverse of∇ψ.

Step 1: ∇ψ is a diffeomorphism from A to Rn. Since ψ is smooth and strictly convex, we
know that ∇ψ is a local diffeomorphism.

1. ∇ψ is injective: assume that∇ψ(x1) = ∇ψ(x2) = y0, consider

(1.4) ψy0(x) := ψ(x)− y0 · x,
we know that ψy0 is smooth, strictly convex and

(1.5) ∇ψy0(x1) = ∇ψy0(x2) = 0.

Consider the restriction, say g, of ψy0 to the line determined by x1 and x2, then g is convex with
critical points x1 and x2. Thus g is a constant on the line segment from x1 to x2, moreover, strict
convexity of g implies x1 = x2. Thus∇ψ is injective.

2. ∇ψ(A) = Rn: fix y ∈ Rn, since ψy tends to infinity at the boundary of A, strict convexity
of ψ implies that ψy has a unique minimum point, say x ∈ A. Thus

0 = ∇ψy(x) = ∇ψ(x)− y.

Step 2: ψ∗ is smooth. Notice that

(1.6) ψ∗(∇ψ(x)) = ∇ψ(x) · x− ψ(x).

Thus ψ∗ ◦ ∇ψ is a smooth, which implies that ψ∗ is smooth on Rn.

Step 3: ∇ψ∗ is the inverse of∇ψ. Apply the differential to (1.6), we get that

(1.7) (∇ψ∗ ◦ ∇ψ(x)) · (ψjk) = x · (ψjk), ∀ x ∈ A.
Since (ψjk) is an invertible matrix function, the above formula gives∇ψ∗ ◦ ∇ψ = Id. �
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Exercise 3: (1) Let φ be a smooth strictly convex function on Rn. Show that ∇φ defines a
diffeomorphism from Rn to ∇φ(Rn), φ∗ is smooth strictly convex on ∇φ(Rn) and ∇φ∗ defines
a diffeomorphism from∇φ(Rn) to Rn.

(2) Let A be a non-empty open set in Rn. Use the following proposition to show that A is
convex if and only if there exists a smooth convex exhaustion function on A.

Proposition 1.6. Let A be a non-empty convex open set in Rn. Then there exists a real analytic
strictly convex exhaustion function on A.

Proof. Inspired by [B21, Proposition 3.2], we shall look at the following "Bergman kernel" type
function (we omit the Lebesgue measure in the integral)

(1.8) B(x) :=

∫
Rn
t

e2t·x∫
y∈A e

2t·y−|y|2 ,

which is always strictly convex and real analytic in A. Since

(1.9) B(x) ≥
∫
Rn
t

e2t·x∫
Rn
y
e2t·y−|y|2 = πne|x|

2

,

we know that B is an exhaustion function when A = Rn. In case A 6= Rn, then A must have a
boundary point. Take x ∈ A such that d(x, ∂A) = ε, by a rotation, one may assume that

d(x, ∂A) = |x− x0|, x0 = (|x0|, 0, · · · , 0), x = (|x0| − ε, 0, · · · , 0), A ⊂ {x1 < |x0|},
which implies

B(x) ≥
∫
Rn
t

e2t1(|x0|−ε)∫
y1<|x0| e

2t·y−|y|2 = πn−1

∫
Rt

e2t(|x0|−ε)∫
y<|x0| e

2ty−y2 ≥ πn−1

∫
t>0

e2t(|x0|−ε)∫ |x0|
−∞ e2ty

=
πn−1

2ε2
.

Hence
B(x) ≥ πn max{e|x|2 , (2π)−1d(x, ∂A)−2},

from which we know that B is strictly convex, real analytic and exhaustion in A. �

Exercise 4: Prove (1.9).

1.4. Mixed volume and Alexandrov-Fenchel inequality. Let A be a bounded non-empty con-
vex open set in Rn. By Proposition 1.6, there exists a real analytic strictly convex exhaustion
function, say ψ, on A. Put φ = ψ∗, then Proposition 1.5 implies that ∇φ is a diffeomorphism
from Rn onto A, thus we can write the volume |A| of A as

(1.10) |A| =
∫
A

dy =

∫
Rn

MA(φ) dx, dx := dx1 ∧ · · · ∧ dxn, dy := dy1 ∧ · · · ∧ dyn.

where MA(φ) := det(φjk) denotes the determinant of the Hessian of φ.

Exercise 5: Use the change of variable y = ∇φ(x) to prove (1.10).

The following proposition is a generalization of (1.10).
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Proposition 1.7. Let φ1, · · · , φN be smooth strictly convex functions such that each ∇φj is a
diffeomorphism from Rn onto a bounded convex open set Aj . Then we have

(1.11) |t1A1 + · · ·+ tNAN | =
∫
Rn

MA(t1φ1 + · · ·+ tNφN) dx, tj > 0, ∀ 1 ≤ j ≤ N.

Proof. By induction on N , it suffices to show that

(1.12) ∇(φ1 + φ2)(Rn) = A1 + A2.

Obviously we have∇(φ1 +φ2)(Rn) ⊂ A1 +A2. Thus it is enough to show that for every y1 ∈ A1

and every y2 ∈ A2, there exists x0 ∈ Rn such that ∇(φ1 + φ2)(x0) = y1 + y2. Consider φyjj
instead of φj , one may assume that y1 = y2 = 0. Choose x1 and x2 such that

(1.13) ∇φ1(x1) = ∇φ2(x2) = 0.

Since φj is convex, we know that each xj is the minimum point of φj . Thus strict convexity of
φj implies that

(1.14) φj(x)→∞, as |x| → ∞,
i.e. each φj is proper. Thus φ1 + φ2 is also proper. Hence there exists a unique minimum point,
say x0, of φ1 + φ2. Thus ∇(φ1 + φ2)(x0) = 0. The proof is complete. �

Remark: The above proposition implies that

p(t) := |t1A1 + · · ·+ tnAn|,
is a polynomial of degree n. We call the coefficient of t1 · · · tn in the polynomial p(t), i.e.

(1.15) V (A1, · · · , An) :=
∂n|t1A1 + · · ·+ tnAn|

∂t1 · · · ∂tn
,

the mixed volume of A1, · · · , An.

Exercise 6: Show that (1.11) implies that |t1A1 + · · ·+ tnAn| is a polynomial of degree n in t
and V (A, · · · , A) = n!|A|.

Reading task 1: Read page 12-13 of [B14] for the related mixed discriminant of matrices.

Theorem 1.8 (Alexandrov-Fenchel inequality). Let A1, · · · , An be bounded non-empty convex
open sets in Rn. Assume that n ≥ 2. Then

V (A1, · · · , An)2 ≥ V (A1, A1, A3, · · · , An)V (A2, A2, A3, · · · , An).

(5th September, no lecture on 29th August).

2. AN INVITATION TO TORIC VARIETIES

For references on toric varieties, see [F, O, CLS], in particular, the readers can try to use
Chapter 1-2 in [CLS] to generalize the following discussion to non-smooth toric varieties. We
will only look at smooth toric varieties, they are called toric manifolds, which are special compact
complex manifolds that possess (C∗)n actions. A nice reference on compact complex manifolds
is the famous book of Kodaira (see Chapter 2, especially section 2.2 in [K]). Compact complex
manifolds are higher dimensional generalizations of compact Riemann surfaces.
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Definition 2.1. A compact topological space X is called a compact Riemann surface if it pos-
sesses a finite open covering

X := ∪1≤j≤NUj,

and homeomorphism σj from Uj onto a domain in C such that

σk ◦ σ−1
j : σj(Uj ∩ Uk)→ σk(Uj ∩ Uk)

is conformal as long as Uj ∩ Uk 6= ∅.

Example. The complex projective space P1 := (C2\{0})/C∗ and the elliptic curves C/(Z+Zτ),
where τ ∈ C and Im τ > 0.

Definition 2.2. A compact topological space X is called an n-dimensional compact toric mani-
fold if it possesses a finite open covering

X := ∪1≤v≤lUv,

and homeomorphism Φv from Uv onto Cn such that

Φv1 ◦ Φ−1
v2

: Φv2(Uv1 ∩ Uv2)→ Φv1(Uv1 ∩ Uv2)

are monomial isomorphisms, i.e. each Φv1 ◦ Φ−1
v2

is of the type

u 7→ (uλ1 , · · · , uλn), λj ∈ Zn, uλj = u
λj1
1 · · ·uλjnn ,

and Φv2(Uv1 ∩ Uv2) ⊂ Cn is the collection of all u ∈ Cn such that uλjkk are holomorphic.

Remark. It is clear that (C∗)n ⊂ Φv2(Uv1 ∩ Uv2) = (C∗)k × Cn−k. The standard example is

Pn := (Cn+1 \ {0})/C∗.

In this section, we shall study how to construct compact toric manifolds using convex polytopes.

2.1. Toric variety and toric line bundle associated to a Delzant polytope.

Definition 2.3. Fix αj ∈ Zn, rj ∈ Z, 1 ≤ j ≤ N , we call the associated convex set

P := {x ∈ Rn : αj · x− rj ≤ 0, 1 ≤ j ≤ N}

a Delzant polytope if
(1) P is bounded with non-empty interior;

(2) for every vertex v of P , the associated index set

Iv := {1 ≤ j ≤ N : αj · v − rj = 0}

has precisely n elements and {αj}j∈Iv generates Zn;

(3) {1, · · · , N} = ∪v is a vertex of P Iv. (8th September)
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Exercise 7: Show that every vertex v of a Delzant polytope P is integral, i.e. v ∈ Zn.

Exercise 8 (hard): Show that the gradient map

(2.1) ∇φ : x 7→ (φx1(x), · · · , φxn(x))

of the convex function

(2.2) φ(x) := log

( ∑
u∈P∩Zn

eu·x

)
on Rn satisfies

(2.3) ∇φ(Rn) = the interior ofP.

Remark: If P is Delzant then one may recover {(αj, rj)}1≤j≤N from P . For each vertex v of P ,
one may define a convex cone

(2.4) σv :=

{∑
j∈Iv

tjαj : tj ≥ 0, ∀ j ∈ Iv

}
generated by {αj}j∈Iv and its polar

(2.5) σ◦v := {x ∈ Rn : α · x ≤ 0, ∀ α ∈ σv} .
Then one may prove the following

Proposition 2.1. The polar cone σ◦v is generated by the corner of P around the vertex v.

Exercise 9: Use Definition 2.3 (2) to show that the solution {βk}k∈Iv of

αj · βk + δjk = 0, j, k ∈ Iv,
satisfies βk ∈ Zn for all k ∈ Iv and defines a basis of Zn; moreover σ◦v is generated by {βk}k∈Iv .

Exercise 10: Write Iv = {k1, · · · kn}, use Exercise 9 to prove that

(2.6) Φv : z 7→ u = Φv(z) := (zβk1 , · · · , zβkn ), zt := zt11 · · · ztnn ,
defines a one to one mapping from (C∗)n onto (C∗)n (we call Φv a monomial isomorphism).

Note that each isomorphism Φv in (2.6) defines an embedding (called torus embedding)

(2.7) Φv : (C∗)n → Cn.

The Delzant toric variety XP is defined by gluing those embeddings via (the maximal extension
of) Φv1 ◦ Φ−1

v2
, more precisely, we have

(2.8) XP = (∪v is a vertex of P Cn × {v}) / ∼,
where (u1, v1) ∼ (u2, v2) if and only if

(2.9) Φv1 ◦ Φ−1
v2

(u2) = u1.

One may verify that XP is a complex manifold covered by l copies (l denotes the number of
vertex of P ) of Cn. From the definition, we also know that XP is fully determined by αj . (12th
September — Exercise 8 will be discussed in 15th)
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Exercise 11: Show that XP ' P1 if P = [0,m] for some positive integer m.

Exercise 12: Find P1, P2 such that XP1 ' P2, XP2 ' P1 × P1.

Remark: Note that all XP in the above exercises are compact. In fact, one may prove that all
XP are compact. This fact is not obvious. One proof is to use the gradient map (2.1).

Exercise 13 (hard): Consider ∇φ : (C∗)n → P defined by

(2.10) ∇φ(z) := ∇φ(log(|z1|2), · · · , log(|zn|2)),

show that ∇φ has a unique proper, smooth and surjective extension to XP

(2.11) ∇φ : XP → P,

where "proper" means that the preimage of every compact set is compact. (15th September)

Hint for Exercise 13: Fix a vertex v of P , one may write

φ(x) = v · x+ log

 ∑
u∈(P−v)∩Zn

eu·x

 .

Note that every u ∈ (P − v) ∩ Zn can be uniquely written as

u =
∑
j∈Iv

cujβj, c
u
j ∈ Z≥0,

where βj are generators of σ◦v defined in Exercise 9. Thus we have

∇φ(x) = v +

∑
j∈Iv cjβj∑

u∈(P−v)∩Zn eu·x
, cj :=

∑
u∈(P−v)∩Zn

cuj e
u·x.

Since {βj}j∈Iv defines a Z-basis of Zn, one may assume that it is the canonical basis of Zn (try!)
so that Iv = {1, · · · , n},

x · βj = xj, c
u
j = uj.

Moreover, after a translation of P , we can assume that v = 0. Then we have

∇φ(z) =

∑
u∈P∩Zn u|zu|2∑
u∈P∩Zn |zu|2

.

Write z′ = (z2, · · · , zn), we know ∇φ|z1=0 can be written as

∇φ(0, z′) =

∑
u′∈P1∩Zn−1 u′|(z′)u

′|2∑
u′∈P1∩Zn−1 |(z′)u′ |2

,

where

(2.12) P1 := {x′ ∈ Rn−1 : (0, x′) ∈ P}.
We observe that ∇φ(0, z′) is precisely the mapping associated to the face P1 of P . Hence one
may do induction on n (the n = 1 case is explained in the class, try!). In this way, we obtain
that ∇φ(XP ) = P . The fact that 0 ∈ P − v for every vertex v implies that ∇φ is smooth as
a map from XP to Rn. Denote by T = R/Z the one-dimensional torus. One may verify that
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∇φ−1(p) ' T n for all p in the interior of P and ∇φ−1(v) ' T 0 for all vertices v of P . In
general, ∇φ−1(x) ' T k if x lies in a k dimensional open face of P . Thus the inverse of ∇φ
induces a homeomorphism, say

(2.13) ∇φ∗ : (P × T n)/ ∼ → XP ,

where (x, [a]) ∼ (x, [b]) (a, b ∈ Rn so that [a], [b] ∈ Rn/Zn = T n) if and only if

a− b ∈
∑
j∈Ix

cjαj, for some cj ∈ R,

where
Ix := {1 ≤ j ≤ N : αj · x− rj = 0}.

Since P × T n is compact, we know XP is compact and ∇φ is proper. (19th September)

Another proof of the compactness of XP is to use the following fact.

Lemma 2.2. With the notation in (2.4), we have

(2.14) ∪v vertex of P σv = Rn.

Proof. Consider the support function of P defined by

hP (α) := sup
x∈P

α · x, α ∈ Rn

For a vertex v ∈ P , we observe that hP (α) = α · v if and only if

α · (x− v) ≤ 0, ∀ x ∈ P.
Since P − v generates the polar cone σ◦v , we obtain

{α ∈ Rn : hP (α) = α · v} = σv.

Thus the lemma follows from hP (α) := supv vertex of P α · v. �

Theorem 2.3. XP is covered by l (l denotes the number of vertex of P ) closed polydiscs

(2.15) XP = ∪v vertex of P Cv,

where each Cv is a polydisc in Cn × {v} defined by

Cv := {(u, v) ∈ Cn × {v} : |uj| ≤ 1, 1 ≤ j ≤ n}.
In particular XP is compact.

Proof. By induction on n, it suffices to show that

(C∗)n = ∪v vertex of P (C∗)n ∩ Cv,
i.e. (with respect to the notation in (2.6))

(C∗)n = ∪v vertex of P {z ∈ (C∗)n : |zβk | ≤ 1, k ∈ Iv},
or equivalently (write xj = log |zj|2)

Rn = ∪v vertex of P {x ∈ Rn : x · βk ≤ 0, k ∈ Iv}.



CONVEXITY IN COMPLEX GEOMETRY 13

Since {βk}k∈Iv generated σ◦v , we have

{x ∈ Rn : x · βk ≤ 0, k ∈ Iv} = σv.

Thus our theorem follows from Lemma 2.2. �

Remark: In (2.12), (∇φ)−1(P1) = XP1 is an (n − 1)-dimensional compact toric manifold
defined by the Delzant polytope P1. It is also a subset of XP , with respect to the z-coordinate , it
is defined by z1 = 0. We call it a divisor of XP . In general, if F is an (n− 1)-dimensional face
(also called facet) of P then (∇φ)−1(F ) is an (n − 1)-dimensional compact toric submanifold
of XP . In case F is given by αj · x = rj , we shall write

(2.16) Zαj
:= (∇φ)−1(F )

and call it the αj divisor of XP .

One may similarly define the Delzant line bundle LP over our Delzant toric variety XP , the
idea is to look at the embedding of (C∗)n × C

(2.17) Ψv : (C∗)n × C→ Cn × C,

where

(2.18) Ψv(z, ξ) := (Φv(z), z−vξ)

The Delzant line bundle LP is defined by gluing those embeddings via (the maximal extension
of) Ψv1 ◦Ψ−1

v2
. (22th September)

Proposition 2.4. Every u ∈ P ∩ Zn defines a holomorphic section, say su, of LP over XP .

Proof. It suffices to show that the section

(C∗)n → (C∗)n × C

defined by z 7→ (z, zu) extends holomorphically over each Ψv embedding. Since

Ψv(z, z
u) = (Φv(z), zu−v),

we need to prove that zu−v is holomorphic with respect to the zβk1 , · · · , zβkn coordinates, i.e.
u− v is lies in the polar cone σ◦v generated by the corner of P around v, which follows from

P − v ∈ σ◦v = {x ∈ Rn : αj · x ≤ 0, ∀ j ∈ Iv}.

�

Exercise 14: Show that P − v ∈ σ◦v .

Exercise 15: Assume that 0 ∈ P , show that the divisor given by s0 = 0 can be written as

(2.19) [s0 = 0] =
∑

1≤j≤N

rjZαj

with respect to the notation (2.16).
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2.2. (C∗)n-action and holomorphic sections of Delzant line bundles. In this section, we shall
use the structure theorem for (C∗)n-action to prove the following converse of Proposition 2.4.

Theorem 2.5. Let P be a Delzant polytope. Then {su}u∈P∩Zn defines a basis of the space
H0(XP , LP ) of holomorphic sections of LP over XP , i.e.

(2.20) H0(XP , LP ) = SpanC{su}u∈P∩Zn .

Proof. The natural (C∗)n action on (C∗)n × C defined by

(2.21) ρ(t)(z, ξ) = (t1z1, · · · , tnzn, ξ), t ∈ (C∗)n,
induces a (C∗)n action ρ on H0(XP , LP ):

(2.22) (ρ(t)s)(ρ(t)z) = ρ(t)(s(z)), u ∈ H0(XP , LP ).

Hence, if s(z) = (z,
∑

u∈Zn cuz
u) is the laurent series expansion of s ∈ H0(XP , LP ) then

(2.23) (ρ(t)s)(z) =

(
z,
∑
u∈Zn

cut
−uzu

)
, t ∈ (C∗)n.

The eigenvectors associated to this action are precisely those monomial sections su defined by
zu for u ∈ P ∩ Zn. Hence our theorem follows from Theorem 2.7 below. �

Definition 2.4. A (C∗)n action on Cm is a holomorphic group homomorphism

ρ : (C∗)n → GL(m,C),

where GL(m,C) denote the space of C-linear isomorphisms on Cm.

Put T = {t ∈ C∗ : |t| = 1}, then Tn is a subgroup of (C∗)n. Via the argument map

e2πix := (e2πix1 , · · · , e2πix1) 7→ ([x1], · · · , [xn]) ∈ (R/Z)n,

one may identify Tn with (R/Z)n. Thus

dx := dx1 · · · dxn
defines a Haar probability measure on Tn. Since ρ is holomorphic, we know that ρ is uniquely
determined by its restriction to Tn.

Definition 2.5. A Tn action on Cm is a continuous group homomorphism

ρ : Tn → GL(m,C).

We shall also call (ρ,Cm) a finite-dimensional complex representation of Tn and denote by
χρ(t) := tr ρ(t) the character of ρ. A subspace V of Cm is said to be ρ-invariant if ρ(Tn)V = V .
(ρ,Cm) is called irreducible if Cm has no proper non-zero ρ-invariant subspaces.

The main result that we want to prove is the following.

Theorem 2.6. Let ρ be a Tn action on Cm, then there exists a basis {ej}1≤j≤m of Cm and
λj ∈ Zn such that

(2.24) ρ(t)ej = tλjej, 1 ≤ j ≤ m, t ∈ Tn,

where tλj = t
λj1
1 · · · t

λjn
n .



CONVEXITY IN COMPLEX GEOMETRY 15

Proof. Step 1: (ρ,Cm) is a direct sum of irreducible representations. The idea is to use the
orthogonal decomposition with respect to the following ρ-invariant inner product

(v, w) :=

∫
Tn

ρ(e2πix)v · ρ(e2πix)w dx, v, w ∈ Cm,

on Cm. Let V be a non-zero ρ-invariant subspace of minimal dimension. It is clearly irreducible,
and its orthogonal complement V ⊥ with respect to the above ρ-invariant inner product is also
ρ-invariant. Hence the result follows from the dimension induction.

Step 2: Check that each ρ(t)a := tλa, λ ∈ Zn, a ∈ C defines a one-dimensional irreducible
representation of Tn. This is not hard, we leave it to the readers. Now it suffices to show that this
construction gives all irreducible representations.

Step 3: Show that there are no more irreducible representations. The main idea is to use

Tv1v2(w) :=

∫
Tn

(ρ(e2πix)w, v1)ρ(e−2πix)v2 dx, v1, v2 ∈ Cm.

One may check that Tv1v2 : Cm → Cm is ρ-invariant, i.e.

(2.25) Tv1v2(ρ(t)w) = ρ(t)Tv1v2(w)

and Tv1v2 satisfies

(2.26) (Tv1v2(w1), w2) =

∫
Tn

(ρ(e2πix)w1, v1)(ρ(e2πix)w2, v2) dx.

Now, if (ρ, V1), (ρ, V2) are two irreducible sub-representations and v1 ∈ V1, v2 ∈ V2, then by
(2.25), we know that the kernel and image of

Tv1v2 : V1 → V2

are all ρ-invariant. Hence if Tv1v2 is not zero, then the irreducibility of V1, V2 gives

kerTv1v2 = 0, ImTv1v2 = V2,

i.e. Tv1v2 is an isomorphism. Denote by χj the character of (ρ, Vj), one may write

χj(e
2πix) =

∑
k

(ρ(e2πix)ekj , e
k
j ),

where each {ekj} denotes an orthonormal basis of Vj . Thus if

(χ1, χ2) :=

∫
Tn

χ1(e2πix)χ2(e2πix) dx 6= 0,

then by (2.26), we must have Tv1v2 6= 0 for some v1, v2, hence (χ1, χ2) 6= 0 implies that (ρ, V1)
is isomorphic to (ρ, V2). Since {e2πiλ·x}λ∈Zn already defines an complete orthonormal basis of
L2(Tn), we know that there are no characters χ ∈ C(Tn) orthogonal to {e2πiλ·x}λ∈Zn . �

Since holomorphic functions on C∗ is uniquely determined by its restriction to T, the above
theorem implies the following result.
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Theorem 2.7. Let ρ be a (C∗)n action on Cm, then there exists a basis {ej}1≤j≤m of Cm and
λj ∈ Zn such that

(2.27) ρ(t)ej = tλjej, 1 ≤ j ≤ m, t ∈ (C∗)n,

where tλj = t
λj1
1 · · · t

λjn
n .

For each λ ∈ Zn, denote by

Wλ := {w ∈ Cm : ρ(t)w = tλw},
then the above theorem gives

Cm = ⊕λ∈ZnWλ.

(26th September, section 2.3 is optional)

2.3. Volume of Delzant line bundles and Bernstein-Kushnirenko theorem. For a positive
integer k, kP defines the same toric variety XP , moreover, the transition function of LkP is the
k-th power of the transition function of LP , hence we write LkP = kLP (or LkP = L⊗kP ). We
call

|LP | := lim
k→∞

dimH0(XP , kLP )

kn/n!

the volume of LP . By Theorem 2.5, we have

(2.28) |LP | = lim
k→∞

#{kP ∩ Zn}
kn/n!

= n!|P |,

which explains the Bernstein-Kushnirenko theorem (0.4).

Exercise 16: Prove (2.28).

Another proof of the Bernstein-Kushnirenko theorem is to use the function φ defined in (2.2).
By a change of variable xj = log |zj|2, we obtain

φP (z) := φ(log |z1|2, · · · , log |zn|2) = log

( ∑
u∈P∩Zn

|zu|2
)
, z ∈ (C∗)n.

Put

(2.29) hP (z, ξ) := |ξ|2e−φP (z),

one may check (try!) that hP ◦ Ψ−1
v is smooth on Cn

v × C for every vertex v of P . Thus hP
extends to a smooth function on LP and defines a Hermitian metric on each fiber of the natural
mapping LP → XP (we call such a function a metric on LP ). In particular, for every section
s ∈ H0(XP , LP ), hP ◦ s defines a smooth function on XP that satisfies

(2.30) log hP ◦ s(z) = log |s(z)|2 − φP (z), z ∈ (C∗)n.

Proof of the Bernstein-Kushnirenko theorem. The idea is to use the Poincaré-Lelong formula,
which gives

ddc log hP ◦ s = [Zs]− ddcφp, ddc :=
i∂∂

2π
,
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where [Zs] denotes the current of integration along the zero set Zs := {s = 0} of s. Hence the
Stokes’ theorem gives

0 =

∫
X

(ddcφp)
n−1 ∧ ddc log hP ◦ s =

∫
Zs

(ddcφp)
n−1 −

∫
X

(ddcφp)
n.

By induction on n, we thus obtain∫
X

(ddcφp)
n = #{x ∈ X : s1(x) = · · · = sn(x) = 0},

for generic sections sj ∈ H0(XP , LP ). Hence∫
X

(ddcφp)
n = n!

∫
Rn

MA(φ)dx = n!|P |

gives the Bernstein-Kushnirenko theorem. �

3. BRASCAMP-LIEB PROOF OF THE PREKOPA THEOREM

3.1. Prekopa’s theorem. We shall follow Berndtsson’s note [B10, section 1.3] to prove the
following Prekopa’s theorem (which is also known as the functional version of the Brunn-
Minkowski inequality in Theorem 1.4).

Notation: We say that φ is a (generalized) convex function on a convex open set U ⊂ RN if
φ = −∞ identically on U or φ is finite everywhere with

(3.1) φ (tx+ (1− t)y) ≤ tφ(x) + (1− t)φ(y) ∀ x, y ∈ U, 0 < t < 1.

The Prekopa theorem. Let φ(t, x) be a convex function on Rm
t × Rn

x. Define φ̃(t) by

e−φ̃(t) :=

∫
Rn
x

e−φ(t,x),

where we omit the Lebesgue measure on Rn
x in the integral. Then φ̃ is convex on Rm

t .

Proof. By Fubini’s theorem, it suffices to prove the n = 1 case. Since convexity means convexity
on any line, one may further assume that m = 1. Write φ as the decreasing limit of a family of
smooth strictly convex functions and∫

Rn
x

e−φ(t,x) = lim
R→∞

∫
|x|<R

e−φ(t,x),

it suffices to prove the following theorem. �

Theorem 3.1. Let φ be a smooth strictly convex function on Rt×Rx. Fix R > 0. Define φ̃(t) by

e−φ̃(t) :=

∫
|x|<R

e−φ(t,x).

Then φ̃ is smooth strictly convex on Rt.
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Proof. By a change of variable, one may assume that R = 1. Apply the t-derivative, we get

−φ̃te−φ̃(t) =

∫
|x|<1

−φte−φ(t,x),

apply the t-derivative again, we get

(−φ̃tt + (φ̃t)
2)e−φ̃(t) =

∫
|x|<1

(−φtt + (φt)
2)e−φ(t,x).

Write the probability measure e−φ(t,x)dx/
∫
|x|<1

e−φ(t,x) as dµ, we have

φ̃t =

∫
|x|<1

φt dµ, φ̃tt =

∫
|x|<1

φtt − (φt)
2 dµ+ (φ̃t)

2.

Note that φ̃t is the µ-average of φt, we have∫
|x|<1

φ̃t(φt − φ̃t) dµ = (φ̃t)
2 − (φ̃t)

2 = 0,

which implies ∫
|x|<1

(φt − φ̃t)2 dµ =

∫
|x|<1

(φt)
2 dµ− (φ̃t)

2,

hence we get

φ̃tt =

∫
|x|<1

φtt dµ−
∫
|x|<1

(φt − φ̃t)2 dµ.

By the lemma below, we then have

φ̃tt ≥
∫
|x|<1

φtt dµ−
∫
|x|<1

(φtx)
2

φxx
dµ.

Since φ is strictly convex, we have

φtt >
(φtx)

2

φxx
,

hence the theorem follows. �

Lemma 3.2. Let ψ be a smooth strictly convex function on R. Let u be a smooth function on R
with

∫
|x|<1

ue−ψ = 0. Then ∫
|x|<1

u2e−ψ ≤
∫
|x|<1

(ux)
2

ψxx
e−ψ.

Proof. One may follow the proof of Lemma 2.7 in [B14, page 4], here we shall introduce another
proof based on the Bochner identity below. For every smooth function α with compact support
in (−1, 1) (i.e. α ∈ C∞0 (−1, 1)), by the Cauchy-Schwarz inequality and (3.5), we have(∫

|x|<1

uxαe
−ψ
)2

≤
∫
|x|<1

α2ψxxe
−ψ
∫
|x|<1

(ux)
2

ψxx
e−ψ ≤

∫
|x|<1

(δα)2e−ψ
∫
|x|<1

(ux)
2

ψxx
e−ψ.
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Consider the following inner product

(α, β)2 :=

∫
|x|<1

(δα)(δβ)e−ψ

on C∞0 (−1, 1), by the above inequality we know that

α 7→
∫
|x|<1

uxαe
−ψ

defines a bounded R-linear functional on (C∞0 (−1, 1), || · ||2), which extends to a functional on
its Hilbert completion H1

0 . Thus the Riesz representation theorem gives v ∈ H1
0 such that

(3.2)
∫
|x|<1

(δv)(δα)e−ψ = (v, α)2 =

∫
|x|<1

uxαe
−ψ, ∀ α ∈ C∞0 (−1, 1),

with

(3.3)
∫
|x|<1

(δv)2e−ψ = ||v||22 ≤
∫
|x|<1

(ux)
2

ψxx
e−ψ.

Think of δv as a distribution, we have∫
|x|<1

(δv)(δα)e−ψ = −
∫
|x|<1

(δv)xαe
−ψ, ∀ α ∈ C∞0 (−1, 1),

hence (3.2) gives −(δv)x = ux in the sense of distribution. Since v ∈ H1
0 , we have∫

|x|<1

(δv)e−ψ = 0,

hence −(δv)⊥ ker ()x in L2
(−1,1)(e

−ψ) which implies that −(δv) is the L2-minimal solution of

(·)x = ux.

Hence we must have −(δv) = u, thus (3.3) gives our estimate. �

The Bochner identity. For every smooth function α in R, we have

(3.4) (α2e−ψ)xx = ((δα)2 + 2(δα)xα + α2
x + ψxxα

2)e−ψ,

where δα := αx − ψxα. If α has compact support we further have

(3.5)
∫
R
(δα)2e−ψ =

∫
R
α2
xe
−ψ +

∫
R
ψxxα

2e−ψ.

Proof. Take derivative of (α2e−ψ)x = (δα)αe−ψ + ααxe
−ψ, we get

(α2e−ψ)xx = ((δα)2 + (δα)xα + α2
x + αδ(αx))e

−ψ,

hence (3.4) follows from
δ(αx) = (δα)x + ψxxα.

Integrating (3.4) over R, we get (3.5). (30th September, section 3.2 is for home-reading.) �

Reading task 2: Read page 5-8 of [B10] for the complex version of the above theory.
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3.2. Prekopa proof of the Brunn-Minkowski inequality. We shall show that the Prekopa the-
orem implies the following "variational" version of the Brunn-Minkowski inequality.

Theorem 3.3. Let A be a convex open set in Rm
t × Rn

x and let At be the slices

At := {x ∈ Rn
x : (t, x) ∈ A}.

Let |At| be the Lebesgue measure of At. Then − log |At| is convex on U := {t : At 6= ∅}.

Proof. Since A is the increasing limit of bounded convex open sets, one may assume that A is
bounded, then − log |At| is finite everywhere on U . Put

φ(t, x) =

{
0 (t, x) ∈ Ā
∞ (t, x) /∈ Ā,

we have

|At| =
∫
Rn
x

e−φ(t,x).

Notice that φ is the increasing limit of a family of smooth convex functions, the Prekopa theorem
implies that − log |At| is the increasing limit of a family of convex functions, which implies that
− log |At| satisfies (3.1). Since − log |At| is also finite everywhere on U , we know that it is
convex (see the notation at the beginning of this section). �

Remark: Let us apply the above theorem to

A := {(t, x) ∈ R2
t × Rn

x : t1, t2 > 0, x ∈ t1A1 + t2A2},

where A1, A2 are bounded non-empty convex open sets in Rn and

t1A1 + t2A2 := {t1x1 + t2x2 : x1 ∈ A1, x2 ∈ A2}.

Then A is convex. Hence the above theorem implies that − log |t1A1 + t2A2| is convex in R2
+.

Lemma 3.4 below implies the following "additive" version of the Brunn-Minkowski inequality.

Brunn-Minkowski inequality. Let A1, A2 be bounded non-empty convex open sets in Rn. Then

|A1 + A2|
1
n ≥ |A1|

1
n + |A2|

1
n .

Lemma 3.4. Let f be a positive smooth function on an open convex cone, say K, in RN . Assume
that f is 1-homogeneous, i.e.

f(tx) ≡ tf(x), ∀ t > 0, x ∈ K.

Then the following statements are equivalent:
A1: f(x+ y) ≥ f(x) + f(y), ∀ x, y ∈ K;
A2: −f is convex;
A3: − log f is convex;
A4: For every x′, y′ ∈ K, t 7→ − log f(tx′ + (1− t)y′) is convex on (0, 1).
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Proof. Since f is 1-homogeneous, A1 implies

(3.6) f(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y).

Thus A1⇒ A2. Since

(3.7) (− log f)ξξ =
−fξξ
f

+
(fξ)

2

f 2
, fξ =

∑
ξjfxj ,

we know A2 ⇒ A3. Since A3 ⇒ A4 is trivial, it is enough to show A4 ⇒ A1: notice that A4
implies

(3.8) f(tx′ + (1− t)y′) ≥ f(x′)tf(y′)1−t.

Take

(3.9) x′ =
x

f(x)
, y′ =

y

f(y)
, t =

f(x)

f(x) + f(y)
,

we get A1. The proof is complete. �

4. A SHORT SEVERAL COMPLEX VARIABLES COURSE

We will mainly follow the Hörmander book [H1]. The aim is to prepare for the next section.

4.1. Holomorphic function of several variables. We will follow section 2.1-2.2 of [H1]. Let
u be a complex valued function in C1(Ω), where Ω is an open set in Cn, which we identify with
R2n. We shall denote the real coordinates by xj, 1 ≤ j ≤ n, and the complex coordinates by
zj = x2j−1 + i x2j , j = 1, · · · , n. Using the notations

∂u

∂zj
:=

1

2

(
∂u

∂x2j−1

− i ∂u
∂x2j

)
,
∂u

∂z̄j
:=

1

2

(
∂u

∂x2j−1

+ i
∂u

∂x2j

)
and

dzj := dx2j−1 + i dx2j, dz̄j := dx2j−1 − i dx2j,

we can express du =
∑

∂u
∂xj
dxj as a linear combination of the differentials dzj and dz̄j ,

(4.1) du =
n∑
j=1

∂u

∂zj
dzj +

n∑
j=1

∂u

∂z̄j
dz̄j.

With the notation

∂u :=
n∑
j=1

∂u

∂zj
dzj, ∂u :=

n∑
j=1

∂u

∂z̄j
dz̄j,

one may also write

(4.2) du = ∂u+ ∂u.

Differential forms which are linear combination of the differentials dzj are said to be of type
(1, 0), and those which are linear combinations of dz̄j are said to be of type (0, 1). Thus ∂u
(resp. ∂u) is the component of du of type (1, 0) (resp. (0, 1)).
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Definition 4.1. A function u ∈ C1(Ω) is said to be holomorphic in Ω if du is of type (1, 0), that
is, if

∂u = 0 (the Cauchy-Riemann equations).
The set of all holomorphic functions in Ω is denoted by O(Ω).

Reading task 3: Read page 23-29 of [H1] for classical results on holomorphic functions.

4.2. Subharmonic functions. We will follow section 1.6 of [H1]. We recall that a C2 function
h in an open set Ω ⊂ C is called harmonic of ∆h = 4∂2h/∂z∂z̄ = 0 in Ω.

Definition 4.2. A function u defined in an open set Ω ⊂ C and with values in [−∞,∞) is called
subharmonic if

(a) u is is upper semi-continuous, that is, {z ∈ Ω : u(z) < s} is open for every s ∈ R;
(b) for each compact set K ⊂ Ω and every continuous function h on K which is harmonic

in the interior of K and is ≥ u on ∂K we have u ≤ h in K.

By our definition the function which is −∞ identically is subharmonic; sometimes this is
excluded in the definition.

Theorem 4.1. If u is subharmonic and 0 < c ∈ R, it follows that cu is subharmonic. If uα,
α ∈ A, is a family of subharmonic functions, then u = supα uα is subharmonic if u < ∞ and u
is upper semi-continuous, which is always the case if A is finite. If u1, u2, · · · is a decreasing of
subharmonic functions, then u = limj→∞ uj is also subharmonic.

Remark. An upper semi-continuous function u defined in an open set Ω ⊂ C is subharmonic if
and only if for every closed disc D ⊂ Ω and every holomorphic polynomial f with u ≤ Ref on
∂D, we have u ≤ Ref in D (see Theorem 1.6.3 (i) in [H1]). In particular, we know that log |f |
is subharmonic in Ω for every f ∈ O(Ω) (see Corollary 1.6.6 in [H1]).

Reading task 4: Read page 17-21 of [H1] for classical results on subharmonic functions.

4.3. Plurisubharmonic functions and pseudoconvexity. We will follow section 2.6 of [H1].

Definition 4.3. A function u defined in an open set Ω ⊂ Cn and with values in [−∞,∞) is called
plurisubharmonic if

(a) u is is upper semi-continuous;
(b) for arbitrary z and w ∈ Cn, the function τ 7→ u(z + τw) is subharmonic in the part of

C where it is defined.
We shall denote the set of all such functions by P (Ω).

Remark. We know that log |f | ∈ P (Ω) for every f ∈ O(Ω). A function u ∈ C2(Ω) is plurisub-
harmonic if and only if (see Theorem 2.6.2 in [H1])

(4.3)
n∑

j,k=1

∂2u(z)

∂zj∂z̄k
wjw̄k ≥ 0, ∀ z ∈ Ω, w ∈ Cn.

We say that u is strictly plurisubharmonic if strict inequality holds true in (4.3) for every z ∈ Ω
and no-zero w.
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Reading task 3: Read the proof of Theorem 2.6.2, 2.6.3, 2.6.4, 2.6.11 in [H1].

Definition 4.4. An open set Ω ⊂ Cn is called pseudoconvex if there exists a smooth strictly
plurisubharmonic exhaustion function on Ω.

Exercise 17: Let u be a smooth function on a convex open set A in Cn, show that

ũ : z 7→ u(Re z)

is plurisubharmonic in A × iRn if and only if u is convex in A. Use this fact to prove that
A × iRn is pseudoconvex (in fact, one may use Theorem 2.6.7 in [H1] to prove that A × iRn is
pseudoconvex if and only if A is convex).

Definition 4.5. An open set Ω ⊂ Cn is called a smoothly bounded strongly pseudoconvex if there
exists a smooth strictly plurisubharmonic function ρ in a neighborhood U of Ω̄ such that

Ω = {z ∈ U : ρ(x) < 0}
and dρ 6= 0 on ∂Ω.

Exercise 18: Show that smoothly bounded strongly pseudoconvex implies pseudoconvex.
Hint: consider u = − log(−ρ). (3rd October)

5. SUBHARMONICITY OF BERGMAN KERNELS

This is a highly non-trivial complex generalization of the Prekopa theorem. Here we will
introduce the Hörmander L2-theory and prove results in section 4 of the Hörmander book.

5.1. L2-estimates for the ∂-equation on pseudoconvex domains in Cn. We shall use the
Bochner methods to rewrite section 4.4 of [H1]. Similar to the real case, we have the following:

The complex Bochner identity. For smooth functions α, β in a domain Ω ⊂ Cn, we have

(5.1) (αβ̄e−ψ)jk̄ =
(

(δjα)(δkβ) + (δjα)k̄β̄ + αk̄βj̄ + α(δkβ)j̄ + ψjk̄αβ̄
)
e−ψ,

where ψ denotes a real smooth function in Ω, δjα := αj − ψjα. Assume further that α has
compact support we have

(5.2)
∫

Ω

(δjα)(δkβ)e−ψ =

∫
Ω

αk̄βj̄e
−ψ +

∫
Ω

ψjk̄αβ̄e
−ψ.

Proof. We have
(αβ̄e−ψ)jk̄ =

(
(δjα)β̄e−ψ + αβj̄e

−ψ)
k̄

and
(αβ̄e−ψ)jk̄ =

(
(δjα)(δkβ) + (δjα)k̄β̄ + αk̄βj̄ + αδk(βj̄)

)
e−ψ,

thus
δk(βj̄) = (δkβ)j̄ + ψkj̄β

gives (5.1). Integration by parts gives (5.2). �
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Definition 5.1. We call u :=
∑n

p=1 up̄dz̄p a smooth (0, 1)-form on Ω if up̄ (NOT the derivatives
of u, just an n-tuple of functions!) are smooth functions on Ω. Fix a smooth strictly plurisubhar-
monic function φ on Ω, we define

(5.3) δu :=
n∑
j=1

δju
j, uj :=

n∑
p=1

up̄φ
p̄j,

where (φp̄j) denotes the inverse matrix of the complex Hessian matrix (φjq̄), i.e. it is defined such
that (

∑
j φ

p̄jφjq̄)1≤p,q≤n is the identity matrix.

Apply (5.2) to α = uj, β = uk, we obtain

(5.4)
∫

Ω

|δu|2e−ψ =
n∑

j,k=1

∫
Ω

(uj)k̄(u
k)j̄e

−ψ +
n∑

j,k=1

∫
Ω

ψjk̄u
juke−ψ.

In order to solve the ∂-equation, we need a lower bound for the left hand side of (5.4). The
problem is that the sign of

J :=
n∑

j,k=1

(uj)k̄(u
k)j̄

is not clear. We need the following lemma. (6th October)

Lemma 5.1. J = |∇φu|2φ − |∂u|2φ, where

|∇φu|2φ :=
∑

(uk)q̄(ul)p̄φ
q̄pφkl̄, |∂u|2φ :=

1

2

∑
((ul̄)q̄ − (uq̄)l̄)((us̄)p̄ − (up̄)s̄)φ

q̄pφl̄s.

Proof. Put

up
l̄

:=
n∑

k,q=1

(uk)q̄φ
q̄pφkl̄.

A direct computation gives∑
up
l̄
ulp̄ = J,

∑
up
l̄
(ul)p̄ =

∑
(up)l̄u

l
p̄ = |∇φu|2φ.

Hence
up
l̄
(ul)p̄ + (up)l̄u

l
p̄ − (up)l̄(u

l)p̄ − upl̄ u
l
p̄ = (up

l̄
− (up)l̄)((u

l)p̄ − ulp̄)
gives

2|∇φu|2φ − 2J =
∑

(up
l̄
− (up)l̄)((u

l)p̄ − ulp̄).

Thus our lemma follows from

up
l̄
− (up)l̄ =

n∑
k,q=1

((uk)q̄φkl̄ − (uk)l̄φkq̄)φ
q̄p =

n∑
q=1

((ul̄)q̄ − (uq̄)l̄)φ
q̄p.

(The readers should try to add the details, see section 1.4 in [B95] for the φ(z) = |z|2 case). �
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Remark. One may check that

(5.5) ∇φu :=
∑

(uk)q̄dz̄q ⊗
∂

∂zk
, ∂u :=

∑
(uj̄)k̄dz̄k ∧ dz̄j.

are independent of the choice of the coordinate z, thus the above computations can also be
generalized to complex manifolds, see [B10] for a nice coordinate free computation on manifolds.
Note that dz̄k ∧ dz̄j = −dz̄j ∧ dz̄k, we know that

∂u =
1

2

∑
((uj̄)k̄ − (uk̄)j̄)dz̄k ∧ dz̄j.

If you are not familiar with the wedge product, then you might think of ∂u as a tuple of functions

(∂u)j̄k̄ = (uj̄)k̄ − (uk̄)j̄.

Since (∂u)j̄k̄ = −(∂u)k̄j̄ , we call ū a (0, 2)-form.

Definition 5.2. A call a tuple of smooth function v := (vj̄1···j̄q) a smooth (0, q)-form if

vj̄1···j̄q = sgnσ vσ(j1)···σ(jq).

where sgnσ denotes the sign of the permutation (j1, · · · , jq) 7→ (σ(j1), · · · , σ(jq)) (it is defined
to be zero if jl = jk for some l 6= k). ∂v is defined as a (0, q + 1)-form

(5.6) (∂v)j̄1···j̄q+1
:= (vj̄1···j̄q)j̄q+1

+ (−1)(vj̄1···j̄q−1j̄q+1
)j̄q + · · ·+ (−1)q(vj̄2···j̄q)j̄1 .

We say that u is ∂-exact if u = ∂v for some v. v is said to be ∂-closed of ∂v = 0. The inner
product of two (0, q)-forms v, w is defined as

(5.7) (v, w) =
1

q!

∑∫
Ω

vj̄1···j̄qwk̄1···k̄qφ
j̄1k1 · · ·φj̄qkqe−ψ,

where we omit the Lebesgue measure in the integral. The adjoint operator ∂
∗

is defined such that

(v, ∂u) = (∂
∗
v, u),

where we assume that u has compact support. The Laplacian operator is defined as

� := ∂∂
∗

+ ∂
∗
∂.

Exercise 19: Show that ∂∂v = 0, in particular, every ∂-exact form is ∂-closed.

Exercise 20: For smooth (0, 2)-form v and (0, 1)-form u. Show that

(5.8) (∂
∗
v)m̄ = −

∑
φlm̄δk(vp̄q̄φ

p̄lφq̄k), ∂
∗
u = −

∑
δk(uj̄φ

j̄k) = −δu.

Exercise 21: Show that the leading order term of � is given by

−
n∑

j,k=1

φk̄j
∂2

∂zj∂z̄k
.

In particular, � is always elliptic.

By Lemma 5.1, (5.4) and (5.8), we have
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Theorem 5.2. For every real smooth function ψ and smooth strictly plurisubharmonic function
φ on Ω, we have

(5.9) (�u, u) = ||∂u||2 + ||∂∗u||2 =

∫
Ω

|∇φu|2φe−ψ +
n∑

j,k=1

∫
Ω

ψjk̄u
juke−ψ,

where u is an arbitrary smooth (0, 1)-form with compact support in Ω.

Thanks to the Riesz representation theorem, the above theorem gives

Theorem 5.3. With the notation above, assume further that ψ is strictly plurisubharmonic. Then
for every smooth (0, 1)-form u with

(5.10) ||u||2ψ :=
n∑

j,k=1

∫
Ω

ψj̄kuj̄uk̄e
−ψ <∞,

there exist a smooth (0, 1)-form v with �v = u and

(5.11) (�v, v) = ||∂v||2 + ||∂∗v||2 ≤ ||u||2ψ.

Proof. The proof is simiar to that of Lemma 3.2. We leave to to the readers. Hint:

|(u, α)|2 ≤ ||u||2ψ
n∑

j,k=1

∫
Ω

ψjk̄α
jαke−ψ ≤ ||u||2ψ(�α, α),

for every smooth (0, 1)-form α with compact support in Ω. Smoothness of v follows from the
standard regularity theorem for elliptic operators (see [W, Theorem 6.5]) �

Exercise 22: Finish the proof of Theorem 5.3. (10th October)

Now we are ready to prove the following main theorem in Hörmander L2-theory.

Theorem 5.4. Let ψ be a smooth strictly plurisubharmonic function on a pseudoconvex domain
Ω ⊂ Cn. Then for every smooth ∂-closed (0, 1)-form u with

(5.12) ||u||2ψ :=
n∑

j,k=1

∫
Ω

ψj̄kuj̄uk̄e
−ψ <∞,

there exists a smooth function f with ∂f = u on Ω and

(5.13)
∫

Ω

|f |2e−ψ ≤ ||u||2ψ.

Proof. Let ρ > 0 be smooth strictly plurisubharmonic exhaustion function on Ω. Fix ε > 0,
apply Theorem 5.3 to φ = ψ + ερ2, we obtain �εvε = u. Let f be the weak limit of ∂

∗
vε as

ε→ 0, we know that (5.11) implies (5.13). Hence it suffices to show that ∂
∗
∂vε → 0 in the sense

of distribution. Note that ∂u = 0 gives ∂∂
∗
∂vε = 0, hence (here (∂a ∧ u)j̄k̄ := (a)k̄uj̄ − (a)j̄uk̄)

(5.14) 0 = (χ(ερ)2∂∂
∗
∂vε, ∂vε) = ||χ(ερ)(∂

∗
∂vε)||2 − ε (2χ(ερ)χ′(ερ)∂ρ ∧ (∂

∗
∂vε), ∂vε),
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where 0 ≤ χ ≤ 1 is a smooth function on R with |χ′| ≤ 1 such that χ = 1 on (−∞, 1) and
χ = 0 on (3,∞). Note that (5.14) gives

(5.15) ||χ(ερ)(∂
∗
∂vε)||4 ≤ 2ε||χ(ερ)(∂

∗
∂vε)||2||u||2ψ,

which implies that ∂
∗
∂vε → 0 in the sense of distribution as ε→ 0. �

Exercise 23: Prove (5.15) and think why the solution f is always smooth. (13th October)

5.2. Variation of Bergman projections and implicit function theorem for Banach spaces.

5.2.1. Variation of Bergman projections.

Definition 5.3. We shall denote by H the space of measurable functions on a domain Ω ⊂ C2

with finite L2-norm (φ is a given real smooth function on Ω)

||u||2φ :=

∫
Ω

|u|2 e−φ <∞, (we omit the Lebesgue measure in the integral).

We call the collection, say

H0 := {u is holomorphic on Ω : ||u||φ <∞},

of those holomorphic functions u in H the Bergman space.

Take a non-positive upper semi-continuous function

G : Ω→ [−∞, 0]

and a smooth function χ : R→ [0,∞) that vanishes on (−∞, 0]. For each t ∈ R, let us define

(5.16) ||u||2t :=

∫
Ω

|u(z)|2 e−φ(z)−χ(G(z)−t)

for u ∈ H (see Definition 5.3, hence each || · ||t is a new Hilbert norm on H).

Definition 5.4. We call the orthogonal projection

P t : H → H0 (for H and H0 see Definition 5.3)

with respect to the above || · ||t norm a Bergman projection.

By using the implicit function theorem, Berndtsson proved the following smoothness theorem.

Theorem 5.5 (Berndtsson’s smoothness theorem). The Bergman projections P t in Definition 5.4
depend smoothly on t, more precisely

P : R×H → H0

(t, u) 7→ P tu,

is a smooth map from R× (H, || · ||φ) to (H0, || · ||φ).
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Proof. Fix (t0, u0) ∈ R×H . Notice that the following mapping

F : R×H ×H0 → H0

(t, u, v) 7→ P t0(eχ(G−t0)−χ(G−t)(v − u))

is smooth, moreover F (t, u, v) = 0 iff v = P tu = P (t, u). Since FH0(t0, u0, v) ≡ idH0 , we
know smoothness of P follows directly Theorem 5.10 in the next subsection. �

Reading task 5: Read the next subsection for the proof of Theorem 5.10.

Remark: For every bounded C-linear mapping f : H0 → C, one may define its functional norm
with respect to || · ||t as

||f ||t := sup{|f(u)| : u ∈ H0, ||u||t = 1}.
Then Berndtsson’s smoothness theorem gives the following result.

Lemma 5.6. ||f ||2t depends smoothly on t.

Proof. Denote by uf the Riesz representation of f in (H0, || · ||φ), i.e.

f(u) = (u, uf )φ.

Notice that (u, uf )φ = (u, eχ(G−t)uf )t, hence

utf := P t(eχ(G−t)uf )

is the Riesz representation of f in (H0, || · ||t). Thus

||f ||2t = ||P t(eχ(G−t)uf )||2t = (P t(eχ(G−t)uf ), e
−χ(G−t)P t(eχ(G−t)uf ))φ

depends smoothly on t by Theorem 5.5. (17th October) �

Similar to the proof of Theorem 3.1, we can continue to prove the following result.

Theorem 5.7. With respect to the notation in the proof of Lemma 5.6, we have

(5.17)
d2

dt2
(
log ||f ||2t

)
≥

(χ′′(G− t)utf , utf )t − ||χ′(G− t)utf − P t(χ′(G− t)utf )||2t
||utf ||2t

.

Proof. Apply the t-derivative to ||f ||2t = ||utf ||2t =
∫

Ω
|utf |2 e−φ−χ(G−t), we get

(5.18)
d

dt

(
||f ||2t

)
=

∫
Ω

(∂tu
t
f + χ′(G− t)utf )utf e

−φt +

∫
Ω

utf ∂tu
t
f e
−φt ,

where

(5.19) φt(z) := φ(t, z) := φ(z) + χ(G(z)− t).
Since for every u ∈ H0, we have

(5.20)
∫

Ω

(∂tu
t
f + χ′(G− t)utf )u e−φ

t

=
d

dt

∫
Ω

utf u e
−φt =

d

dt

∫
Ω

ufu e
−φ = 0,

we know that (5.18) reduces to

(5.21)
d

dt

(
||f ||2t

)
=

∫
Ω

utf ∂tu
t
f e
−φt .
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Take the derivative again, we get

d2

dt2
(
||f ||2t

)
= ||∂tutf ||2t +

∫
Ω

utf ∂t(∂tu
t
f + χ′(G− t)utf ) e

−φt + (χ′′(G− t)utf , utf )t,

which implies (together with (5.21))

(5.22)
d2

dt2
(
log ||f ||2t

)
≥
∫

Ω
utf ∂t(∂tu

t
f + χ′(G− t)utf ) e−φ

t
+ (χ′′(G− t)utf , utf )t

||utf ||2t
.

Now by (5.20), we have ∂tutf + χ′(G− t)utf ⊥H0. Put

∂tu
t
f + χ′(G− t)utf := uH⊥0 ,

note that ∂tutf ∈ H0, hence we must have

uH⊥0 = χ′(G− t)utf − P t(χ′(G− t)utf ).
Hence

0 =
d

dt

∫
Ω

utf uH⊥0 e
−φt = ||uH⊥0 ||

2
t +

∫
Ω

utf ∂tuH⊥0 e
−φt

gives ∫
Ω

utf ∂t(∂tu
t
f + χ′(G− t)utf ) e

−φt =

∫
Ω

utf ∂tuH⊥0 e
−φt = −||uH⊥0 ||

2
t ,

and (5.17) follows from (5.22). �

Now we can apply the complex version (see Theorem 5.4) of Lemma 3.2 to prove the following
convexity theorem of Berndtsson (compare with Theorem 3.1).

Convexity theorem of Berndtsson. LetG ≤ 0 be a function on a pseudoconvex domain Ω ⊂ Cn

such that eG is smooth and

(5.23) φ+ λG is smooth and strictly plurisubarmonic

on {G 6= −∞} for some constant λ > 0, where φ is a given smooth strictly plurisubarmonic
function on Ω. Let χ : R → [0,∞) be a smooth convex increasing function that vanishes on
(−∞, 0] with χ′ ≤ λ. Let f be a bounded C-linear functional on

H0 :=

{
u is holomorphic on Ω : ||u||2φ :=

∫
Ω

|u|2e−φ <∞
}
,

then

log ||f ||2t := sup

{
log |f(u)|2 : u ∈ H0,

∫
Ω

|u|2e−φ−χ(G−t) = 1

}
is convex in t ∈ R.

Proof. By our assumptions and Theorem 5.4, we have

(5.24) ||χ′(G− t)utf − P t(χ′(G− t)utf )||2t ≤
∫

Ω

χ′′(G− t)|utf |2 e−φ
t

,

hence our theorem follows from (5.17). (20th October) �
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Exercise 24: Prove (5.24).

Remark: Our assumptions imply that

(τ, z) 7→ φ(z) + χ(G(z)− Re τ)

is plurisubharmonic in (τ, z) ∈ C × Ω, which can be seen a complex version of the convexity
assumption of φ in Theorem 3.1. In applications, the best χ would be

sup{χ(s) : χ : R→ [0,∞) is smooth convex increasing, vanishes on (−∞, 0] and χ′ ≤ λ},
which = λmax{s, 0}. Let us choose a family of χ, satisfying the above assumptions, with limit
λmax{s, 0}, then the above theorem gives the following result.

Theorem 5.8. Let G ≤ 0 be a function on a pseudoconvex domain Ω ⊂ Cn such that eG is
smooth and

(5.25) φ+ λG is smooth and strictly plurisubarmonic

on {G 6= −∞} for some constant λ > 0, where φ is a given smooth strictly plurisubarmonic
function on Ω. Let f be a bounded C-linear functional on

H0 :=

{
u is holomorphic on Ω : ||u||2φ :=

∫
Ω

|u|2e−φ <∞
}
,

then

log ||f ||2t := sup

{
log |f(u)|2 : u ∈ H0,

∫
Ω

|u|2e−φ−λmax{G−t,0} = 1

}
is convex in t ∈ R.

5.2.2. Implicit function theorem for Banach spaces. In this section, we shall recall the implicit
function theorem for Banach spaces by following Hörmander’s book [H0].

Definition 5.5. Let H be a real vector space. We call

(5.26) || · || : H → [0,∞),

a norm on H if

||cx|| = |c| · ||x||, ∀ c ∈ R,
||x+ y|| ≤ ||x||+ ||y||, ∀ x, y ∈ H,

||x|| > 0, if x 6= 0.

Let H be a real vector space with norm || · ||. Then H is a metric space with distance function:

(5.27) d(x, y) := ||x− y||.
Recall that a metric space H is complete if each Cauchy sequence in H has a unique limit point
in H . If H is not complete then one may consider its completion H̃ , which is defined to be the
space of equivalent Cauchy sequences in H .

Definition 5.6. Let H be a real vector space with norm || · ||. We call H a real Banach space if
H is complete as a metric space.
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Remark: Let H1 and H2 be two real Banach spaces. Then H1×H2 is also a Banach space with
norm

(5.28) ||(x, y)||2 := ||x||2 + ||y||2, ∀ (x, y) ∈ H1 ×H2.

If we denote by L(H1, H2) the space of bounded R-linear maps fromH1 toH2 then we know that
L(H1, H2) is also a Banach space with norm

(5.29) ||T || := sup{||Tx|| : ||x|| ≤ 1, x ∈ H1}, ∀ T ∈ L(H1, H2).

Notice that if H1 is R with the usual norm then L(H1, H2) is isomorphic to H2. Now we can
define the notion of differentiability on Banach space.

Definition 5.7. Let H1 and H2 be two real Banach spaces. Let f be a map from an open set U
in H1 to H2. We say f is differentiable at x ∈ U if there exists T ∈ L(H1, H2) such that

(5.30) ||f(x+ h)− f(x)− Th|| = o||h||, i.e. lim
||h||→0, h 6=0

||f(x+ h)− f(x)− Th||
||h||

= 0.

If f is differentiable at x then we shall write T = f ′(x). We call f is C1 on U if f is differentiable
at all points in U and its derivative

(5.31) f ′ : x 7→ f ′(x),

is a continuous map from U to L(H1, H2).

Remark: Let f be a C1 map, we say f is C2 if the derivative, say f (2), of f ′ is C1. Then we can
inductively define the notion of a Ck map, and define f (k+1) as the derivative of f (k) for every
k ≥ 2. And we say f is C∞ or smooth if f is Ck for every k. Now we can state the inverse
function theorem for Banach spaces:

Theorem 5.9 (Inverse function theorem). Let f be aC1 map from an open set U in a real Banach
space H to H . Assume that f is C1 on U , 0 ∈ U , f(0) = 0 and f ′(0) = idH is the identity map
on H . Then there exists an open neighborhood V ⊂ U of 0 such that f |V is a homeomorphism
onto the open set f(V ) and its inverse

(5.32) f−1 : f(V )→ V

is also C1. Assume further that f is Ck then f−1 is also Ck on the same set f(V ).

Before proving it, let us show how to use it to prove the implicit function theorem:

Theorem 5.10 (Implicit function theorem). Let H1, H2 and H3 be three real Banach spaces. Let
Φ be a smooth map from an open neighborhood, say U , of (x0, y0) ∈ H1 × H2 to H3. Assume
that there exists A ∈ L(H3, H2) such that

(5.33) AΦ′H2
(x0, y0) = idH2 , Φ′H2

(x0, y0)A = idH3 ,

then there exists a neighborhood, say V , of x0 and a unique smooth map, say f , from V to H2

such that f(x0) = y0 and

(5.34) Φ(x, f(x)) ≡ Φ(x0, y0), ∀ x ∈ V.
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Proof. Notice that we can assume x0, y0 are at the origin. Put

(5.35) Ψ(x, y) = (x,Φ(x, y)).

Then

(5.36) ||Ψ(a, b)−Ψ(0)− (a,Φ′H1
(0)a+ Φ′H2

(0)b)|| = o||(a, b)||.
Thus

(5.37) Ψ′(0)(a, b) = (a,Φ′H1
(0)a+ Φ′H2

(0)b).

Let us consider the linear map, say B, from H1 ×H3 to H1 ×H2 such that

(5.38) B(a, c) = (a,A(c− Φ′H1
(0)a)).

Thus

(5.39) BΨ′(0) = idH1×H2 , Ψ′(0)B = idH1×H3 .

Put

(5.40) Ψ̃ := BΨ.

Then Ψ̃′(0) = idH1×H2 . By the inverse function theorem, the inverse, Ψ̃−1 of Ψ̃ is smooth in a
neighborhood of the origin. Thus Ψ̃−1B is the inverse map of Ψ near the origin. Let us denote it
by Ψ−1 and write

(5.41) Ψ−1(x, z) = (x, g(x, z)).

Thus

(5.42) Φ(x, g(x, z)) ≡ z

near the origin, which implies that f(x) = g(x, 0). �

Proof of the inverse function theorem. We shall use the following lemma.

Lemma 5.11. Let f be a C1 map from an open set U in a Banach space H to H . Then

(5.43) ||f(x)− f(y)|| ≤ ||x− y|| · sup
0≤t≤1

||f ′(x+ t(y − x))||, ∀ x, y ∈ H.

Remark. Put g(t) = f(x + t(y − x)), then g′(t) = f ′(x + t(y − x))(y − x) and the above
estimate follows directly from the following Newton-Lebnitz formula

f(y)− f(x) = g(1)− g(0) =

∫ 1

0

g′(t) dt =

∫ 1

0

f ′(x+ t(y − x))(y − x) dt.

Fix y near the origin, we want to find x∗ such that f(x∗) = y. Put

g(x) = x− f(x) + y,

it suffices to find the fixed point of g. We claim that the fixed point of g exists and is given by the
limit of

xk+1 := y − f(xk) + xk = g(xk), k ≥ 0, x0 := 0. (24th October)
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In fact, since g′(0) = 0 and g is C1, there exists a small δ > 0 such that

(5.44) ||g′(x)|| < 1

2
, ∀ ||x|| ≤ 2δ.

Applying Lemma 5.11 to g, we know that

(5.45) ||g(x′)− g(x)|| ≤ 1

2
||x′ − x||,

if both ||x|| and ||x′|| are < 2δ. Note that x1 = y, x0 = 0. Apply (5.45) to x1, x0, we get

||x2 − x1|| = ||g(x1)− g(x0)|| ≤ 1

2
||x1 − x0|| =

1

2
||y||.

Assume that ||y|| < δ, we obtain which gives

||x2|| ≤ ||x1||+
1

2
||y|| =

(
1 +

1

2

)
||y|| < 2δ.

By induction on k, we have

(5.46) ||xk+1 − xk|| ≤
1

2
||xk − xk−1|| ≤ · · · ≤

δ

2k
, ∀ k ≥ 2

and

(5.47) ||xk+1|| ≤
(

1 + · · ·+ 1

2k

)
||y|| ≤ 2||y|| < 2δ, ∀ k ≥ 0,

thus {xk} is a Cauchy sequence with limit x∗ such that ||x∗|| ≤ 2||y|| < 2δ. Now we know that
f(x∗) = y. If there is another x̂ such that ||x̂|| < 2δ and f(x̂) = y then (5.45) implies that

(5.48) ||x̂− x∗|| = ||g(x̂)− g(x∗)|| ≤ 1

2
||x̂− x∗||.

Thus x∗ = x. Thus for every y with ||y|| < δ there exists a unique point, say x∗, with ||x∗|| < 2δ
such that f(x∗) = y. We shall write x∗ = f−1(y). Put

(5.49) V = {x : ||x|| < 2δ} ∩ f−1{y : ||y|| < δ}.
Then V ⊂ U is an open neighborhood of the origin such that f |V is a bijection onto

f(V ) = {y ∈ H : ||y|| < δ}.
The final step is to prove that f−1 is C1 on f(V ). Fix y0 = f(x0), x0 ∈ V . Since f is differen-
tiable at x0, we have

(5.50) ||f(x)− f(x0)− f ′(x0)(x− x0)|| = o||x− x0||.
Notice that (5.44) implies that f ′(x0) is invertiable. And (5.45) implies that

(5.51)
1

2
||x− x0|| ≤ ||y − y0|| ≤ 2||x− x0||, ∀ x ∈ V, y = f(x).

Thus (5.50) gives

(5.52) ||(f ′(x0))−1(y − y0)− (x− x0)|| = o||y − y0||,
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which implies that f−1 is differentiable at y0 with derivative (f ′(f−1(y0)))−1. Thus f−1 is dif-
ferentiable on f(V ) and its derivative

(5.53) y 7→ (f ′(f−1(y)))−1

is continuous since f is C1. Using (5.53) inductively, we know that if f is Ck on V then f−1 is
also Ck on f(V ). The proof is complete. �

5.3. Convexity of Bergman kernels. Let ψ be a plurisubharmonic function on a domain Ω ⊂
Cn. Fix z0 ∈ Ω, we call

(5.54) Kψ(z0) := sup
u holomorphic on Ω

|u(z0)|2∫
Ω
|u|2e−ψ

the Bergman kernel with respect to (Ω, ψ, z0). Apply Theorem 5.8 to the functional

f : u 7→ u(z0),

we obtain the following convexity property of the Bergman kernels.

Theorem 5.12. Let G ≤ 0 be a function on a pseudoconvex domain Ω ⊂ Cn such that eG is
smooth and

(5.55) φ+ λG is smooth and strictly plurisubarmonic

on {G 6= −∞} for some constant λ > 0, where φ is a given smooth strictly plurisubarmonic
function on Ω. Put

H0 :=

{
u is holomorphic on Ω : ||u||2φ :=

∫
Ω

|u|2e−φ <∞
}
, φt := φ+ λmax{G− t, 0},

then logKφt(z0) is convex in t ∈ R.

Exercise 25: Replace φ by φ + ε|z|2 and show that the above theorem can be generalized to
the following case.

Theorem 5.13. Let G ≤ 0 be a function on a pseudoconvex domain Ω ⊂ Cn such that eG is
smooth and

(5.56) φ+ λG is smooth and plurisubarmonic

on {G 6= −∞} for some constant λ > 0, where φ is a given smooth plurisubarmonic function
on Ω. Put

H0 :=

{
u is holomorphic on Ω : ||u||2φ :=

∫
Ω

|u|2e−φ <∞
}
, φt := φ+ λmax{G− t, 0},

then logKφt(z0) is convex in t ∈ R.
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5.4. Suita conjecture. Let us apply Theorem 5.12 to the case that Ω ⊂ C is smoothly bounded
(in fact, we only need the Green function of Ω exists), φ = 0 and

G(z) := 2GΩ(z, z0).

Note that

Kφt(z0) ≤ sup
u holomorphic on Ω

|u(z0)|2∫
G<t
|u|2
≤ Ce−2t

for some constant C does not depend on t, we know that the convex function logKφt(z0) + 2t is
bounded near t = −∞, thus it is increasing in t, which gives

KΩ(z0) = Kφ0(z0) ≥ lim
t→−∞

e2tKφt(z0) ≥ 1

lim supt→−∞ e
−2t
∫

Ω
e−λmax{G−t,0} .

Put
A(s) := the Lebesgue measure of {G < s}.

Then for every t < 0, we have∫
Ω

e−λmax{G−t,0} =

∫ 0

−∞
e−λmax{s−t,0}dA(s) = eλtA(0)−

∫ 0

−∞
A(s) d e−λmax{s−t,0}.

Thus for λ > 2, we have

1

KΩ(z0)
≤ lim sup

t→−∞

(
−e−2t

∫ 0

−∞
A(s) d e−λmax{s−t,0}

)
= lim sup

t→−∞

(
−e−2t

∫ 0

t

A(s) d e−λ(s−t)
)

= lim sup
t→−∞

(
λ

∫ 0

t

A(s)e−2se−(λ−2)(s−t) ds

)
= lim sup

t→−∞

(
λ

∫ −t
0

A(x+ t)e−2(x+t)e−(λ−2)x dx

)
≤
(
λ

∫ ∞
0

e−(λ−2)x dx

)
lim sup
s→−∞

(
A(s)e−2s

)
=

λ

λ− 2
πe−2ρ(z0),

where
ρ(z0) := lim

z→z0
{G(z)− log |z − z0|}

denotes the Robin constant of Ω at z0. Letting λ→∞, the Suita conjecture (0.1) follows.

Exam project: Use the methods in section 5.2 to prove the following Berndtsson’s subhar-
monicity property of the Bergman kernel (try to read the original paper [B06]!).
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Subharmonicity property of the Bergman kernel. Let Ω be a bounded pseudoconvex domain
in Cn. Let φ be a smooth strictly plurisubarmonic function on D×U , where D := {t ∈ C : |t| <
1} and U is an open neighborhood of the closure of Ω. Put

φt(z) := φ(t, z), (t, z) ∈ D× Ω.

Then
(t, z) 7→ logKφt(z)

is plurisubarmonic in (t, z) ∈ D × Ω. In particular, for every fixed z0 ∈ Ω, logKφt(z0) is
subharmonic in t (compare with Theorem 5.13).
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