EXERCISES FOR MA8107 - FALL 2014

FRANZ LUEF – NTNU

(1) Let $C^n(\mathbb{T})$ be the space of n-times continuously differentiable functions on the circle \mathbb{T} . Show that $C^n(\mathbb{T})$ is a Banach algebra with respect to pointwise multiplication for the following norm:

$$||f||_{C^n} := \sum_{j=0}^n \frac{||f^{(j)}||_{\infty}}{j!}.$$

- (2) Let v be a submultiplicative weight function on the integers \mathbb{Z} . Show that there exists a constant $a \geq 0$ such that $v(k) \leq e^{a|k|}$ for all $k \in \mathbb{Z}$.
- (3) Show the following: If f is in $C^1(\mathbb{T})$, then f is in the Wiener algebra \mathcal{W} and

$$||f||_{\mathcal{W}} \le ||f||_{\infty} + \frac{\pi^2}{3} \sum_{k \ne 0} k^2 |\widehat{f}(k)|^2.$$

Hint: Use that $\hat{f}'(k) = 2\pi i k \hat{f}(k)$ and Parseval's Theorem for Fourier series.

(4) Let \mathcal{A} be a Banach algebra and we denote by $\sigma(a)$ the spectrum of an element a in \mathcal{A} . Then we have that

$$\sigma(ab) \cup \{0\} = \sigma(ba) \cup \{0\}.$$

(5) Let $a = (a_n)_{n\geq 0}$ be a sequence in $\ell^2(\mathbb{N})$. Then we define the shift operator $Sa = (a_{n+1})$ on $\ell^2(\mathbb{N})$. Determine S^* and compute the spectrum of SS^* and S^*S .