1. Chapter 2.1-2.3 Harmonic functions:

Poisson kernel, Hardy-Littlewood Maximal function
1.1. Summation methods and Poisson kernel. We are studying the convergence of the Fourier series of functions $f \in L^{1}\left(L^{p}\right)$ and in chapter one we tried Cesáro summation method that gives nice convergence in L^{1}. Now we look at Abel summation. For $f \in L^{1}$ define

$$
u_{f}(r e(\theta))=\sum_{n} \hat{f}(n) r^{|n|} e(n \theta) .
$$

Using complex notation $z=r e(\theta)$ we get

$$
u_{f}(z)=\sum_{n=0}^{\infty} \hat{f}(n) z^{n}+\sum_{n=1}^{\infty} \hat{f}(-n) \bar{z}^{n}
$$

The series converges when $|z|<1$ and the result is a harmonic function. On the circle of radius r we get

$$
u(r \cdot)=f * P_{r}, \quad P_{r}(\theta)=\frac{1-r^{2}}{1-2 r \cos 2 \pi \theta+r^{2}}
$$

P_{r} is called the Poisson kernel, it is a positive even function and the family $\left\{P_{r}\right\}_{r}$ forms an approximate identity when $r \rightarrow 1$.
1.2. Little Hardy spaces. We define

$$
h^{p}(\mathbb{D})=\left\{u: \mathbb{D} \rightarrow \mathbb{C} ; \Delta u=0, \sup _{r}\|u(r \cdot)\|_{L^{p}(\mathbb{T})}<\infty\right\}
$$

Then the following holds:
(i) If $f \in L^{p}$ then $u_{f} \in h^{p}$ for $1 \leq p \leq \infty$.
(ii) $u \in h^{1}$ if and only if there exists a Borel measure μ on \mathbb{T} such that $u(r \cdot)=P_{r} * \mu$.
(iii) $u \in h^{p}, 1<p<\infty$ if and only if $u=u_{f}$ for some $f \in L^{p}$.
(iv) $u \in h^{\infty} \cap C(\overline{\mathbb{D}})$ if and only if $u=u_{f}$ for some $f \in C(\mathbb{T})$.

To prove (ii) and (iii) we apply the sequential version of the BanachAlaoglu theorem. It says that closed unit ball of the dual space of a separable normed vector space is sequentially compact in the weak* topology. In our case $L^{p}(\mathbb{T})=\left(L^{q}(\mathbb{T})\right)^{*}$ where $1 / p+1 / q=1$ when $p>1$ and $L^{1}(\mathbb{T}) \subset$ $M(\mathbb{T})=(C(\mathbb{T}))^{*}$. The proof consists of taking a dense sequence in the predual space and, using the standard diagonal construction, finding a weakly convergent subsequence from a bounded sequence. Further, we show that in $f \in L^{p}(\mathbb{T})$ or $\mu \in M(\mathbb{T})$ is the limiting function or measure then

$$
u(r e(\theta))-P_{r} * f(\theta)=P_{r / s} * u_{s}-P_{r} * f=\left(P_{r / s}-P_{r}\right) * u_{s}+P_{r} *\left(u_{s}-f\right), 0<r<s .
$$

We let $s \rightarrow 1$ along the weakly convergent subsequence and get

$$
\mid u\left(r e(\theta)-P_{r} * f(\theta)\left|\leq\left\|P_{r / s}-P_{r}\right\|_{q}\left\|u_{s}\right\|_{p}+\left|P_{r} * u_{s}-P_{r} * f\right| .\right.\right.
$$

The last term goes to zero since $u_{s} \rightarrow f$ weakly and $P_{r} \in C(\mathbb{T}) \subset L^{q}(\mathbb{T})$ and the first term goes to zero since $\left\|u_{s}\right\|_{p}$ is uniformly bounded and $\| P_{r / s}-$ $P_{r} \|_{\infty} \rightarrow 0$ as $s \rightarrow 1$.
1.3. Hardy-Littlewood maximal function. Suppose that ν is a measure on \mathbb{R}^{d}. For any $f \in L^{1}(d \nu)$ we define the maximal function of f with respect to ν by

$$
M_{\nu} f(x)=\sup _{B \ni x} \frac{1}{\nu(B)} \int_{B}|f(y)| d \nu(y) .
$$

It is clear that if $f \in L^{\infty}(d \nu)$ then $M f(x) \leq\|f\|_{\infty}$.
Lemma 1. Assume that ν satisfies the doubling property, there exists a constant A such that

$$
\nu(2 B) \leq A \nu(B)
$$

for any ball $B \in \mathbb{R}^{d}$. Then for any $f \in L^{1}(\nu)$ and $t>0$ the following inequality holds

$$
\nu\left\{x: M_{\nu} f>t\right\} \leq A^{2} t^{-1}\|f\|_{1} .
$$

Proof. Let $K \subset\left\{x: M_{\nu} f>t\right\}$ be a compact set. By the definition of the maximal function $K \subset \cup_{j=1}^{N} B_{j}$, where $\int_{B_{j}}|f(y)| d \nu(y)>t \nu\left(B_{j}\right)$. We choose disjoint sub-collection of balls $B_{j^{\prime}}$ such that $\cup_{j^{\prime}} 3 B_{j^{\prime}} \supset K$. then
$\nu(K) \leq \sum_{j^{\prime}} \nu\left(3 B_{j^{\prime}}\right) \leq A^{2} \sum_{j^{\prime}} \nu\left(B_{j^{\prime}}\right) \leq A^{2} t^{-1} \int_{B_{j^{\prime}}}|f(y)| d \nu(y) \leq A^{2} t^{-1}\|f\|_{1}$.
1.4. L^{p} and weak- L^{p} spaces. . Let (X, A, μ) be a measure space. For f be a measurable function on X, we define its distribution function by

$$
\mu_{f}(t)=\mu\{x \in X:|f(x)|>t\} .
$$

Then

$$
\|f\|_{p}^{p}=\int_{0}^{\infty} p t^{p-1} \mu_{f}(t) d t
$$

The weak L^{p} space is the space of functions f such that

$$
\mu_{f}(t) \leq C^{p} t^{-p}, \quad t>0
$$

The smallest constant C for which the inequality above holds is called the weak- L^{p} norm of f. Clearly an L^{p} function belongs to weak- L^{p} and $\|f\|_{\text {weak }-L^{p}} \leq\|f\|_{p}$ since

$$
\mu\{x \in X:|f(x)|>t\} \leq t^{-p} \int_{X}|f|^{p} d \mu=t^{-p}\|f\|_{p}^{p}
$$

2. Chapter 1.6, 2.4: An interpolation theorem and CONVERGENCE ALMOST EVERYWHERE

2.1. Marcinkiewicz interpolation theorem. Let D be a linear subset of measurable functions on (X, A, μ) such that D contains all finite linear combinations of characteristic functions of sets of finite measure and if $f \in D$ and $C>0$ then $\min \{f, C\}$ is also in D. We say that an operator T from D to measurable functions on (Y, B, ν) is sublinear if

$$
\text { (i) }|T(a f)(y)|=a|T f(y)|, \quad(i i)\left|T\left(f_{1}+f_{2}\right)(y)\right| \leq\left|T f_{1}(y)\right|+\left|T f_{2}(y)\right| .
$$

Theorem 1. Suppose that T is a sublinear operator such that

$$
\|T f\|_{\text {weak }-q_{j}} \leq C_{j}\|f\|_{p_{j}}
$$

for $f \in L^{p_{j}}(X) \cap D$ and $j=0,1$, where $q_{0} \neq q_{1}$ and $p_{j} \leq q_{j}$. Then $\|T f\|_{q_{t}} \leq C_{t}\|f\|_{p_{t}}$, where $0<t<1$ and

$$
\frac{1}{p_{t}}=\frac{1-t}{p_{0}}+\frac{t}{p_{1}}, \quad \frac{1}{q_{t}}=\frac{1-t}{q_{0}}+\frac{t}{q_{1}} .
$$

We will prove it for the case $p_{0}=q_{0}$ and $p_{1}=q_{1}$.
Proof. Let $f \in D \cap L^{p_{t}}$, we want to estimate the distribution function $\mu_{T f}(t)$. Assume that $p_{0}<p_{1}$.

We fix $t>0$ and decompose f into sum of two functions $f=f_{0}+f_{1}$, where

$$
f_{0}=\left\{\begin{array}{l}
0,|f| \leq A t \\
f,|f|>A t
\end{array} \quad, \quad f_{1}=\left\{\begin{array}{l}
f,|f| \leq A t \\
0,|f|>A t
\end{array} .\right.\right.
$$

By our assumption $f_{1}, f_{2} \in D$ and $|T f| \leq\left|T f_{1}\right|+\left|T f_{2}\right|$. Then

$$
\nu_{T f}(t) \leq \nu_{T f_{0}}(t / 2)+\nu_{T f_{1}}(t / 2)
$$

We note that $f_{1} \in L^{p_{0}} \cap D$ and $f_{2} \in L^{p_{1}} \cap D$ since $p_{0} \leq p_{t} \leq p_{1}$. Further,

$$
\mu_{f_{0}}(s)=\left\{\begin{array}{ll}
\mu_{f}(A t), & s<A t \\
\mu_{f}(s), & s>A t
\end{array} \quad, \quad \mu_{f_{1}}(s)=\left\{\begin{array}{l}
\mu_{f}(s)-\mu_{f}(A t), s<A t \\
0, \quad s>A t
\end{array}\right.\right.
$$

Applying the weak estimate for T in $L^{p_{0}}$ we get

$$
\nu_{T f_{0}}(t / 2) \leq C_{0}^{p_{0}} 2^{p_{0}} t^{-p_{0}}\left\|f_{0}\right\|_{p_{0}}^{p_{0}}=\left(2 C_{0}\right)^{p_{0}} t^{-p_{0}} \int_{0}^{\infty} p_{0} s^{p_{0}-1} \mu_{f_{0}}(s) d s .
$$

Using the formula for $\mu_{f_{0}}$ we get

$$
\nu_{T f_{0}}(t / 2) \leq\left(2 C_{0}\right)^{p_{0}} t^{-p_{0}}\left((A t)^{p_{0}} \mu_{f}(A t)+\int_{A t}^{\infty} p_{0} s^{p_{0}-1} \mu_{f}(s) d s\right)
$$

On the other hand for $f_{1} \in L^{p_{1}}$ we get

$$
\nu_{T f_{1}}(t / 2) \leq\left(2 C_{1}\right)^{p_{1}} t^{-p_{1}} \int_{0}^{A t} p_{1} s^{p_{1}-1} \mu_{f}(s) d s
$$

Thus for any $t>0$ we obtain

$$
\begin{aligned}
\nu_{T f}(t) \leq\left(2 C_{0}\right)^{p_{0}} t^{-p_{0}}\left((A t)^{p_{0}} \mu_{f}(A t)+\right. & \left.\int_{A t}^{\infty} p_{0} s^{p_{0}-1} \mu_{f}(s) d s\right) \\
& +\left(2 C_{1}\right)^{p_{1}} t^{-p_{1}} \int_{0}^{A t} p_{1} s^{p_{1}-1} \mu_{f}(s) d s
\end{aligned}
$$

We forget about our decomposition $f=f_{0}+f_{1}$ after we obtained this inequality and start to vary t.

Now we integrate the inequality above

$$
\begin{aligned}
& \int_{0}^{\infty} p t^{p-1} \nu_{T f}(t) d t \leq\left(2 C_{0} A\right)^{p_{0}} A^{-p} \int_{0}^{\infty} p s^{p-1} \mu_{f}(s) d s \\
& \quad+\frac{\left(2 C_{0}\right)^{p_{0}} A^{p_{0}-p}}{p-p_{0}} \int_{0}^{\infty} p s^{p-1} \mu_{f}(s) d s+\frac{\left(2 C_{1}\right)^{p_{1}} A^{p_{1}-p}}{p_{1}-p} \int_{0}^{\infty} p s^{p-1} \mu_{f}(s) d s
\end{aligned}
$$

This implies $\|T f\|_{L^{p}(\nu)} \leq C\|f\|_{L^{p}(\mu)}$. To minimize the constant we should choose A in an appropriate way. We see that C blows up when p approaches p_{0} or p_{1}, this is natural as we assumed only weak inequalities at the end points.
2.2. Almost everywhere convergence. Using estimates for the maximal function we can now prove that if $f \in L^{1}(\mathbb{T})$ then $\lim _{r \rightarrow 1-} u_{f}(r e(\theta))=f(\theta)$ a.e.

The idea is to approximate f by a continuous function g in L^{1}-norm. We know that $g * P_{r}$ converges to g uniformly (since P_{r} is an approximate identity). Further we know that $(f-g) * P_{r}(\theta) \leq M(f-g)(\theta)$ for each r, thus

$$
\begin{aligned}
& \left|\left\{\theta: \limsup _{r \rightarrow 1-} f * P_{r}(\theta)-\liminf _{r \rightarrow 1-} f * P_{r}>\epsilon\right\}\right| \\
& \quad=\left|\left\{\theta: \limsup _{r \rightarrow 1-}(f-g) * P_{r}(\theta)-\liminf _{r \rightarrow 1-}(f-g) * P_{r}>\epsilon\right\}\right| \\
& \quad \leq|\theta: M(f-g)(\theta)>\epsilon / 2| \leq 6\|f-g\|_{1} \epsilon^{-1}
\end{aligned}
$$

Similarly, using the box kernel instead of the Poisson kernel we see that if $f \in L^{1}$ that for almost every θ we have $f(\theta)=\lim _{t \rightarrow 0} \frac{1}{2 t} \int_{\theta-t}^{\theta+t} f(\tau) d \tau$. The same result holds in $L^{1}\left(\mathbb{R}^{d}\right)$. It is called the Lebesgue differentiation theorem.

3. Chapter 2.5: Weighted estimates for the maximal function

3.1. Calderón-Zygmund decomposition. Let $f \in L^{1}\left(\mathbb{R}^{d}\right)$ and $\lambda>0$. Then there is a sequence of dyadic cubes $\left\{Q_{j}\right\}$ and a corresponding decomposition of f into sum of two functions $f=g+b$ with $g=\sum_{j} f \chi_{Q_{j}}$ such that
(i) $\lambda\left|Q_{j}\right| \leq \int_{Q_{j}}|f| \leq 2^{d} \lambda\left|Q_{j}\right|$
(ii) $|b| \leq \lambda$ a.e.

The construction starts with large dyadic cubes and uses simple stopping time argument. Property (ii) follows from the Lebesgue differentiation theorem.

Now we clearly have that $\{x: M f(x) \geq \lambda\} \supset \cup_{j} Q_{j}$. We will show that in some sense the opposite inclusion holds. More precisely,

$$
\left\{x: M f>4^{d} \lambda\right\} \subset \cup_{j} 3 Q_{j} .
$$

Assume that $M f(x)>4^{d} \lambda$ then there is a cube Q such that $x \in Q$ and $\int_{Q}|f|>4^{d} \lambda|Q|$. This cube Q can be covered by 2^{d} equal dyadic cubes $\left\{Q_{l_{k}}\right\}$ such that $|Q|<\left|Q_{l_{k}}\right| \leq 2^{d}|Q|$. Then there is at least one $Q_{l_{k}}$ such that

$$
\int_{Q_{l_{k}}}|f|>2^{d} \lambda|Q| \geq \lambda\left|Q_{l_{k}}\right|
$$

It means that $Q_{l_{k}}$ is contained in a dyadic cube from the family constructed in the Calderón-Zygmund decomposition, $Q_{l_{k}} \subseteq Q_{j}$. Then $x \in Q \subset 3 Q_{l_{k}} \subseteq$ $3 Q_{j}$.
3.2. Muckenhaupt weights. We know want to discuss for which positive functions w in $\mathbb{R}^{d}, w \in L_{l o c}^{1}\left(\mathbb{R}^{d}\right)$, the L^{p}-inequality for maximal functions holds. More precisely, we want to know when for any $f \in L^{p}\left(\mathbb{R}^{d}, w\right)$

$$
\begin{equation*}
\int_{\{M f>t\}} w(x) d x \leq K_{p} t^{-p} \int_{\mathbb{R}^{d}}|f(x)|^{p} w(x) d x . \tag{1}
\end{equation*}
$$

Lemma 2. Suppose that $w>0$ in \mathbb{R}^{d} and (1) holds. Then for any $f \in$ $L^{p}\left(\mathbb{R}^{d}, w\right)$ and any cube Q

$$
\begin{equation*}
\int_{Q} w(x) d x\left(\frac{1}{|Q|} \int_{Q} f(x) d x\right)^{p} \leq K_{p} \int_{Q}|f(x)|^{p} w(x) d x . \tag{2}
\end{equation*}
$$

In particular, for a measurable set $E \subset Q$ with $|E|>0$ we have

$$
\begin{equation*}
\int_{Q} w(x) d x \leq K_{p}\left(\frac{|Q|}{|E|}\right)^{p} \int_{E} w(x) d x . \tag{3}
\end{equation*}
$$

Proof. It is clear that $Q \subset\left\{x: M f(x)>|Q|^{-1} \int_{Q}|f|\right\}$. Then (1) with $t=|Q|^{-1} \int_{Q}|f|$ implies (2). Then if we take $f=\chi_{E}$ we get (3).

We remark that if w satisfies (3) then $w(A)=\int_{A} w(x) d x$ is a doubling measure.

Definition. We say that a positive function $w \in L_{l o c}^{1}$ satisfies Muckenhoupt A_{1} condition if

$$
\begin{equation*}
M w(x) \leq C_{1} w(x) \quad \text { a.e. } \tag{4}
\end{equation*}
$$

and that it satisfies Muckenhoupt A_{p} condition with $1<p<\infty$ if for any cube Q

$$
\begin{equation*}
\frac{1}{|Q|} \int_{Q} w\left(\frac{1}{|Q|} \int_{Q} w^{-1 /(p-1)}\right)^{p-1}<C_{p} \tag{5}
\end{equation*}
$$

Proposition 1. Suppose that $w>0$ in \mathbb{R}^{d} and (1) holds with $1 \leq p<\infty$. Then w satisfies A_{p}

It follows from the inequality (3) in lemma above and the Lebesgue differentiation theorem when $p=1$ and from the inequality (2) for $p>1$ when we take $f=w^{-1 /(p-1)} \chi_{B}$.

Lemma 3. If w satisfies A_{p} with $1 \leq p<\infty$ then (2) holds.
It follows from the Hölder inequality when $p>1$. See also solutions to problems for this chapter.

Theorem 2. If w satisfies A_{p} with $1 \leq p \leq \infty$ then (1) holds.
Proof. We use calderón-Zygmund decomposition of the function f on the level $t / 4^{d}$ such that $\{M f>t\} \subset \cup_{j} 3 Q_{j}$ from this decomposition. We already know that A_{p} implies (2) which implies doubling. Thus

$$
\int_{M f>t} w(x) d x \leq C \sum_{j} \int_{Q_{j}} w(x) d x \leq C K_{p} \sum_{j}\left(\frac{1}{\left|Q_{j}\right|} \int_{Q_{j}}|f|\right)^{-p} \int_{Q_{j}}|f|^{p} w .
$$

Since Q_{j} are from the Calderón-Zygmund decomposition, we can estimate the first factor by $4^{p d} t^{-p}$. Then

$$
\int_{M f>t} w(x) d x \leq C K_{p} 4^{p d} t^{-p} \int|f(x)|^{p} w(x) d x
$$

