1. CHAPTER 2.1-2.3 HARMONIC FUNCTIONS:
PoOISSON KERNEL, HARDY-LITTLEWOOD MAXIMAL FUNCTION

1.1. Summation methods and Poisson kernel. We are studying the
convergence of the Fourier series of functions f € L'(LP) and in chapter one
we tried Cesdro summation method that gives nice convergence in L'. Now
we look at Abel summation. For f € L' define

us(re(0)) =Y f(n)re(no).

Using complex notation z = re(6) we get
wlo) =3 fu)sn + 3 fon)en
n=0 n=1

The series converges when |z| < 1 and the result is a harmonic function. On
the circle of radius r we get
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P, is called the Poisson kernel, it is a positive even function and the family
{P,}, forms an approximate identity when r — 1.

u(r)=f=*P.,, P.(0)

1.2. Little Hardy spaces. We define
RP(D) = {u:D — C; Au = 0,sup ||u(r-)|| (1) < 00}

Then the following holds:

(i) If f € L? then uy € h? for 1 < p < 0.

(i) w € h' if and only if there exists a Borel measure u on T such that
u(r-) = P, * p.

(ili) w € AP, 1 < p < oo if and only if u = uy for some f € LP.

(iv) u € h*° N C(D) if and only if u = u; for some f € C(T).

To prove (ii) and (iii) we apply the sequential version of the Banach-
Alaoglu theorem. It says that closed unit ball of the dual space of a separable
normed vector space is sequentially compact in the weak™ topology. In our
case LP(T) = (L%T))* where 1/p + 1/¢ = 1 when p > 1 and LY(T) C
M(T) = (C(T))*. The proof consists of taking a dense sequence in the pre-
dual space and, using the standard diagonal construction, finding a weakly
convergent subsequence from a bounded sequence. Further, we show that in
f e LP(T) or p € M(T) is the limiting function or measure then

u(re(0))—Pxf(0) = P,jsxus—Pox f = (P js— P, )*us+Pox(us—f), 0 <r < s.
We let s — 1 along the weakly convergent subsequence and get
lu(re(0) — B % f(O)] < |Prys — Brllglluslly + [P % us — P f].
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The last term goes to zero since us — f weakly and P. € C(T) C L%(T)
and the first term goes to zero since ||u,||, is uniformly bounded and || P, /s —
Ploc > 0as s — 1.

1.3. Hardy-Littlewood maximal function. Suppose that v is a measure
on R%. For any f € L(dv) we define the maximal function of f with respect

to v by
5 [ rwlarw

It is clear that if f € L*(dv) then Mf ) < oo

M, f(x) = = sup

Lemma 1. Assume that v satisfies the doubling property, there exists a
constant A such that

v(2B) < Av(B)

for any ball B € RY. Then for any f € L*(v) and t > 0 the following
inequality holds

viz: M,f >t} < A% f|

Proof. Let K C {z : M,f > t} be a compact set. By the definition of the
maximal function K C UL, B;, where [, |f(y)|dv(y) > tv(B;). We choose

disjoint sub-collection of balls B such that Uy3B;; D K. then

K) <) v3By) < A*) w(By) < A% / f)ldv(y) < A2
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1.4. L? and weak-L? spaces. . Let (X, A, u) be a measure space. For f
be a measurable function on X, we define its distribution function by

ppt) = p{e € X - [f(x)] > t}.
Then .
Il = [ o steyie
The weak LP space is the space of functions f such that
pp(t) < CPEPL > 0.

The smallest constant C' for which the inequality above holds is called
the weak-LP norm of f. Clearly an LP function belongs to weak-LP and

Hf”weak:—LP < ||pr since

ple € X:1f@1> 0 <7 [ |Pdu= eI



2. CHAPTER 1.6, 2.4: AN INTERPOLATION THEOREM AND
CONVERGENCE ALMOST EVERYWHERE

2.1. Marcinkiewicz interpolation theorem. Let D be a linear subset of
measurable functions on (X, A, i) such that D contains all finite linear com-
binations of characteristic functions of sets of finite measure and if f € D
and C' > 0 then min{f, C'} is also in D. We say that an operator 7" from D
to measurable functions on (Y, B, v) is sublinear if

(@) [T(af)W)| = alTf(y)l,  @IT(fr+ L)W <TH@)]+ T L)

Theorem 1. Suppose that T is a sublinear operator such that

HTwaeak*qj < CijHpj

for f e LP(X)ND and j = 0,1, where qo # ¢1 and p; < q;. Then
T fllg < Cellfllp,, where 0 <t <1 and

1 1—1 t 1 1—1 t

_ = + —, R

Pt Po P1 at do a1
We will prove it for the case pg = qo and p; = ¢;.

Proof. Let f € DNLP*, we want to estimate the distribution function pur(t).
Assume that py < p;.
We fix t > 0 and decompose f into sum of two functions f = fo + fi1,

where
£ = 0, [f| < At I = [ lfl < At
UL A T 0, |f] > A

By our assumption fi, fo € D and |Tf| < |Tf1| + |T f2|. Then

vrp(t) < vrg(t/2) + vry, (8/2).
We note that f; € LPo N D and fo € LP* N D since py < p; < pp. Further,

_ Jup(Al), s < At () = pp(AL), s < At
iols) = {uf(s), s> At #ils) = 0, s> At

Applying the weak estimate for T in L we get

vrp(t/2) < Co 27t || folljo = (200)”015_”0/ Pos™ ™ g, (s)ds.
0

Using the formula for py, we get

v 2) < (Copr (A0 (40 + [ " s (s)ds ).

At
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On the other hand for f; € LP' we get

At
s (4/2) < QCOPET [ pus (),
0

Thus for any ¢t > 0 we obtain

org(0) < CoP e (AP0 + [ s use)as)

At
At
+(2C’1)p1t_p1/ 18P g (s)ds.
0

We forget about our decomposition f = fy + fi after we obtained this
inequality and start to vary t.
Now we integrate the inequality above

/ ptp_ll/Tf(t)dtS(2C’0A)p°A_p/ psP s (s)ds
0 0

20, )Po Apo—p o0 2C',)Pr AP1—P ©
+ L/ ps" s (s)ds + L/ ps s (s)ds.
P—"Po 0 P1—Pp 0
This implies |T'f||rw) < CJf|lr(w- To minimize the constant we should
choose A in an appropriate way. We see that C' blows up when p approaches
po or pi, this is natural as we assumed only weak inequalities at the end

points. O

2.2. Almost everywhere convergence. Using estimates for the maximal
function we can now prove that if f € L*(T) then lim,_,1_ us(re(d)) = f(0)
a.e.

The idea is to approximate f by a continuous function ¢ in L'-norm.
We know that g % P, converges to g uniformly (since P, is an approximate
identity). Further we know that (f — g) * P.(0) < M(f — g)(0) for each r,
thus

{6 : limsup f * P,.(0) — lim inf f P, > €}l
r—1—

r—1—

= {0 : limsup(f — g) P, () — lim inf(f — g) * B > €}

r—1—

<16 M(f - g)(0) > ¢/2| < 6] — glhe .

Similarly, using the box kernel instead of the Poisson kernel we see that
if f € L' that for almost every § we have f(6) = lim, & [} f(7)dr.
The same result holds in L!'(R?). It is called the Lebesgue differentiation
theorem.
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3. CHAPTER 2.5: WEIGHTED ESTIMATES FOR THE MAXIMAL FUNCTION

3.1. Calderén-Zygmund decomposition. Let f € L*(RY) and A > 0.
Then there is a sequence of dyadic cubes {@;} and a corresponding decom-
position of f into sum of two functions f = g + b with g = >_ i /Xq; such
that

(1) AQsl < Jo, 1f] < 2M|Qy

(ii) |b] < A a.e.

The construction starts with large dyadic cubes and uses simple stop-
ping time argument. Property (ii) follows from the Lebesgue differentiation
theorem.

Now we clearly have that {z : M f(x) > A} D U;Q);. We will show that
in some sense the opposite inclusion holds. More precisely,

{z: Mf > 492} C U;3Q;.
Assume that M f(z) > 49X then there is a cube @ such that z € Q and
fQ |f| > 49\ @Q|. This cube @ can be covered by 2¢ equal dyadic cubes
{Qy,} such that |Q| < |Q.| < 2¢/Q|. Then there is at least one Q;, such
that

/Q 1> 20Q] = Q-

Ly
It means that ();, is contained in a dyadic cube from the family constructed
in the Calderén-Zygmund decomposition, ¢);, € @;. Then z € Q C 3Q;, C

3Q;.

3.2. Muckenhaupt weights. We know want to discuss for which positive

functions w in RY, w € L} (R?), the LP-inequality for maximal functions

holds. More precisely, we want to know when for any f € LP(RY, w)
(1) / w(z)ds < Kt / 1 (2) [P () da.
{M f>t} R4

Lemma 2. Suppose that w > 0 in R? and (1) holds. Then for any f €
LP(RY w) and any cube Q

@ [ (& / f)e) <K, [ 1repuas

In particular, for a measurable set E C Q with |E| > 0 we have

(3) /Qw(as)das <K, (%)p/lzw(@dm.

Proof. 1t is clear that @ C {z : Mf(z) > Q™" [, |f}. Then (1) with
t =1Q|™" [, |f| implies (2). Then if we take f = xr we get (3). O



We remark that if w satisfies (3) then w(A) = [, w(x)dz is a doubling
measure.

Definition. We say that a positive function w € L}, satisfies Muckenhoupt
A, condition if

(4) Muw(z) < Ciw(x) ae.

and that it satisfies Muckenhoupt A, condition with 1 < p < oo if for any
cube )

1 1 —1/(10—1>)p_1 c
®) rQ\/Qw(\@r/Q“’ <

Proposition 1. Suppose that w > 0 in R? and (1) holds with 1 < p < oo.
Then w satisfies A,

It follows from the inequality (3) in lemma above and the Lebesgue dif-
ferentiation theorem when p = 1 and from the inequality (2) for p > 1 when
we take f = w VP Vyp.

Lemma 3. If w satisfies A, with 1 < p < oo then (2) holds.

It follows from the Holder inequality when p > 1. See also solutions to
problems for this chapter.

Theorem 2. If w satisfies A, with 1 < p < oo then (1) holds.

Proof. We use calderén-Zygmund decomposition of the function f on the
level ¢/4% such that {Mf > t} C U;3Q; from this decomposition. We
already know that A, implies (2) which implies doubling. Thus

1 - ,
/Mf>tw(a:)dx§C';/jw(:c)d:cSC’Kij: <m Qj|f\> /Qj\fl w.

Since (); are from the Calderén-Zygmund decomposition, we can estimate
the first factor by 479 ~P. Then

/ w(x)dr < C’Kp4pdt_p/ |f(2)[Pw(x)dx.
Mf>t



