
1. Chapter 2.1-2.3 Harmonic functions:
Poisson kernel, Hardy-Littlewood Maximal function

1.1. Summation methods and Poisson kernel. We are studying the
convergence of the Fourier series of functions f ∈ L1(Lp) and in chapter one
we tried Cesáro summation method that gives nice convergence in L1. Now
we look at Abel summation. For f ∈ L1 define

uf (re(θ)) =
∑
n

f̂(n)r|n|e(nθ).

Using complex notation z = re(θ) we get

uf (z) =
∞∑
n=0

f̂(n)zn +
∞∑
n=1

f̂(−n)z̄n.

The series converges when |z| < 1 and the result is a harmonic function. On
the circle of radius r we get

u(r·) = f ∗ Pr, Pr(θ) =
1− r2

1− 2r cos 2πθ + r2
.

Pr is called the Poisson kernel, it is a positive even function and the family
{Pr}r forms an approximate identity when r → 1.

1.2. Little Hardy spaces. We define

hp(D) = {u : D→ C; ∆u = 0, sup
r
‖u(r·)‖Lp(T) <∞}.

Then the following holds:
(i) If f ∈ Lp then uf ∈ hp for 1 ≤ p ≤ ∞.
(ii) u ∈ h1 if and only if there exists a Borel measure µ on T such that
u(r·) = Pr ∗ µ.
(iii) u ∈ hp, 1 < p <∞ if and only if u = uf for some f ∈ Lp.
(iv) u ∈ h∞ ∩ C(D̄) if and only if u = uf for some f ∈ C(T).

To prove (ii) and (iii) we apply the sequential version of the Banach-
Alaoglu theorem. It says that closed unit ball of the dual space of a separable
normed vector space is sequentially compact in the weak* topology. In our
case Lp(T) = (Lq(T))∗ where 1/p + 1/q = 1 when p > 1 and L1(T) ⊂
M(T) = (C(T))∗. The proof consists of taking a dense sequence in the pre-
dual space and, using the standard diagonal construction, finding a weakly
convergent subsequence from a bounded sequence. Further, we show that in
f ∈ Lp(T) or µ ∈M(T) is the limiting function or measure then

u(re(θ))−Pr∗f(θ) = Pr/s∗us−Pr∗f = (Pr/s−Pr)∗us+Pr∗(us−f), 0 < r < s.

We let s→ 1 along the weakly convergent subsequence and get

|u(re(θ)− Pr ∗ f(θ)| ≤ ‖Pr/s − Pr‖q‖us‖p + |Pr ∗ us − Pr ∗ f |.
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The last term goes to zero since us → f weakly and Pr ∈ C(T) ⊂ Lq(T)
and the first term goes to zero since ‖us‖p is uniformly bounded and ‖Pr/s−
Pr‖∞ → 0 as s→ 1.

1.3. Hardy-Littlewood maximal function. Suppose that ν is a measure
on Rd. For any f ∈ L1(dν) we define the maximal function of f with respect
to ν by

Mνf(x) = sup
B3x

1

ν(B)

∫
B

|f(y)|dν(y).

It is clear that if f ∈ L∞(dν) then Mf(x) ≤ ‖f‖∞.

Lemma 1. Assume that ν satisfies the doubling property, there exists a
constant A such that

ν(2B) ≤ Aν(B)

for any ball B ∈ Rd. Then for any f ∈ L1(ν) and t > 0 the following
inequality holds

ν{x : Mνf > t} ≤ A2t−1‖f‖1.

Proof. Let K ⊂ {x : Mνf > t} be a compact set. By the definition of the
maximal function K ⊂ ∪Nj=1Bj, where

∫
Bj
|f(y)|dν(y) > tν(Bj). We choose

disjoint sub-collection of balls Bj′ such that ∪j′3Bj′ ⊃ K. then

ν(K) ≤
∑
j′

ν(3Bj′) ≤ A2
∑
j′

ν(Bj′) ≤ A2t−1
∫
Bj′

|f(y)|dν(y) ≤ A2t−1‖f‖1.

�

1.4. Lp and weak-Lp spaces. . Let (X,A, µ) be a measure space. For f
be a measurable function on X, we define its distribution function by

µf (t) = µ{x ∈ X : |f(x)| > t}.

Then

‖f‖pp =

∫ ∞
0

ptp−1µf (t)dt.

The weak Lp space is the space of functions f such that

µf (t) ≤ Cpt−p, t > 0.

The smallest constant C for which the inequality above holds is called
the weak-Lp norm of f . Clearly an Lp function belongs to weak-Lp and
‖f‖weak−Lp ≤ ‖f‖p since

µ{x ∈ X : |f(x)| > t} ≤ t−p
∫
X

|f |pdµ = t−p‖f‖pp.
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2. Chapter 1.6, 2.4: An interpolation theorem and
convergence almost everywhere

2.1. Marcinkiewicz interpolation theorem. Let D be a linear subset of
measurable functions on (X,A, µ) such that D contains all finite linear com-
binations of characteristic functions of sets of finite measure and if f ∈ D
and C > 0 then min{f, C} is also in D. We say that an operator T from D
to measurable functions on (Y,B, ν) is sublinear if

(i) |T (af)(y)| = a|Tf(y)|, (ii)|T (f1 + f2)(y)| ≤ |Tf1(y)|+ |Tf2(y)|.

Theorem 1. Suppose that T is a sublinear operator such that

‖Tf‖weak−qj ≤ Cj‖f‖pj
for f ∈ Lpj(X) ∩ D and j = 0, 1, where q0 6= q1 and pj ≤ qj. Then
‖Tf‖qt ≤ Ct‖f‖pt, where 0 < t < 1 and

1

pt
=

1− t
p0

+
t

p1
,

1

qt
=

1− t
q0

+
t

q1
.

We will prove it for the case p0 = q0 and p1 = q1.

Proof. Let f ∈ D∩Lpt , we want to estimate the distribution function µTf (t).
Assume that p0 < p1.

We fix t > 0 and decompose f into sum of two functions f = f0 + f1,
where

f0 =

{
0, |f | ≤ At

f, |f | > At
, f1 =

{
f, |f | ≤ At

0, |f | > At
.

By our assumption f1, f2 ∈ D and |Tf | ≤ |Tf1|+ |Tf2|. Then

νTf (t) ≤ νTf0(t/2) + νTf1(t/2).

We note that f1 ∈ Lp0 ∩D and f2 ∈ Lp1 ∩D since p0 ≤ pt ≤ p1. Further,

µf0(s) =

{
µf (At), s < At

µf (s), s > At
, µf1(s) =

{
µf (s)− µf (At), s < At

0, s > At
.

Applying the weak estimate for T in Lp0 we get

νTf0(t/2) ≤ Cp0
0 2p0t−p0‖f0‖p0p0 = (2C0)

p0t−p0
∫ ∞
0

p0s
p0−1µf0(s)ds.

Using the formula for µf0 we get

νTf0(t/2) ≤ (2C0)
p0t−p0

(
(At)p0µf (At) +

∫ ∞
At

p0s
p0−1µf (s)ds

)
.
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On the other hand for f1 ∈ Lp1 we get

νTf1(t/2) ≤ (2C1)
p1t−p1

∫ At

0

p1s
p1−1µf (s)ds.

Thus for any t > 0 we obtain

νTf (t) ≤ (2C0)
p0t−p0

(
(At)p0µf (At) +

∫ ∞
At

p0s
p0−1µf (s)ds

)
+ (2C1)

p1t−p1
∫ At

0

p1s
p1−1µf (s)ds.

We forget about our decomposition f = f0 + f1 after we obtained this
inequality and start to vary t.

Now we integrate the inequality above∫ ∞
0

ptp−1νTf (t)dt ≤ (2C0A)p0A−p
∫ ∞
0

psp−1µf (s)ds

+
(2C0)

p0Ap0−p

p− p0

∫ ∞
0

psp−1µf (s)ds+
(2C1)

p1Ap1−p

p1 − p

∫ ∞
0

psp−1µf (s)ds.

This implies ‖Tf‖Lp(ν) ≤ C‖f‖Lp(µ). To minimize the constant we should
choose A in an appropriate way. We see that C blows up when p approaches
p0 or p1, this is natural as we assumed only weak inequalities at the end
points. �

2.2. Almost everywhere convergence. Using estimates for the maximal
function we can now prove that if f ∈ L1(T) then limr→1− uf (re(θ)) = f(θ)
a.e.

The idea is to approximate f by a continuous function g in L1-norm.
We know that g ∗ Pr converges to g uniformly (since Pr is an approximate
identity). Further we know that (f − g) ∗ Pr(θ) ≤ M(f − g)(θ) for each r,
thus

|{θ : lim sup
r→1−

f ∗ Pr(θ)− lim inf
r→1−

f ∗ Pr > ε}|

= |{θ : lim sup
r→1−

(f − g) ∗ Pr(θ)− lim inf
r→1−

(f − g) ∗ Pr > ε}|

≤ |θ : M(f − g)(θ) > ε/2| ≤ 6‖f − g‖1ε−1.

Similarly, using the box kernel instead of the Poisson kernel we see that

if f ∈ L1 that for almost every θ we have f(θ) = limt→0
1
2t

∫ θ+t
θ−t f(τ)dτ .

The same result holds in L1(Rd). It is called the Lebesgue differentiation
theorem.
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3. Chapter 2.5: Weighted estimates for the maximal function

3.1. Calderón-Zygmund decomposition. Let f ∈ L1(Rd) and λ > 0.
Then there is a sequence of dyadic cubes {Qj} and a corresponding decom-
position of f into sum of two functions f = g + b with g =

∑
j fχQj

such
that
(i) λ|Qj| ≤

∫
Qj
|f | ≤ 2dλ|Qj|

(ii) |b| ≤ λ a.e.
The construction starts with large dyadic cubes and uses simple stop-

ping time argument. Property (ii) follows from the Lebesgue differentiation
theorem.

Now we clearly have that {x : Mf(x) ≥ λ} ⊃ ∪jQj. We will show that
in some sense the opposite inclusion holds. More precisely,

{x : Mf > 4dλ} ⊂ ∪j3Qj.

Assume that Mf(x) > 4dλ then there is a cube Q such that x ∈ Q and∫
Q
|f | > 4dλ|Q|. This cube Q can be covered by 2d equal dyadic cubes

{Qlk} such that |Q| < |Qlk | ≤ 2d|Q|. Then there is at least one Qlk such
that ∫

Qlk

|f | > 2dλ|Q| ≥ λ|Qlk |.

It means that Qlk is contained in a dyadic cube from the family constructed
in the Calderón-Zygmund decomposition, Qlk ⊆ Qj. Then x ∈ Q ⊂ 3Qlk ⊆
3Qj.

3.2. Muckenhaupt weights. We know want to discuss for which positive
functions w in Rd, w ∈ L1

loc(Rd), the Lp-inequality for maximal functions
holds. More precisely, we want to know when for any f ∈ Lp(Rd, w)

(1)

∫
{Mf>t}

w(x)dx ≤ Kpt
−p
∫
Rd

|f(x)|pw(x)dx.

Lemma 2. Suppose that w > 0 in Rd and (1) holds. Then for any f ∈
Lp(Rd, w) and any cube Q

(2)

∫
Q

w(x)dx

(
1

|Q|

∫
Q

f(x)dx

)p
≤ Kp

∫
Q

|f(x)|pw(x)dx.

In particular, for a measurable set E ⊂ Q with |E| > 0 we have

(3)

∫
Q

w(x)dx ≤ Kp

(
|Q|
|E|

)p ∫
E

w(x)dx.

Proof. It is clear that Q ⊂ {x : Mf(x) > |Q|−1
∫
Q
|f |}. Then (1) with

t = |Q|−1
∫
Q
|f | implies (2). Then if we take f = χE we get (3). �
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We remark that if w satisfies (3) then w(A) =
∫
A
w(x)dx is a doubling

measure.

Definition. We say that a positive function w ∈ L1
loc satisfies Muckenhoupt

A1 condition if

(4) Mw(x) ≤ C1w(x) a.e.

and that it satisfies Muckenhoupt Ap condition with 1 < p < ∞ if for any
cube Q

(5)
1

|Q|

∫
Q

w

(
1

|Q|

∫
Q

w−1/(p−1)
)p−1

< Cp.

Proposition 1. Suppose that w > 0 in Rd and (1) holds with 1 ≤ p < ∞.
Then w satisfies Ap

It follows from the inequality (3) in lemma above and the Lebesgue dif-
ferentiation theorem when p = 1 and from the inequality (2) for p > 1 when
we take f = w−1/(p−1)χB.

Lemma 3. If w satisfies Ap with 1 ≤ p <∞ then (2) holds.

It follows from the Hölder inequality when p > 1. See also solutions to
problems for this chapter.

Theorem 2. If w satisfies Ap with 1 ≤ p ≤ ∞ then (1) holds.

Proof. We use calderón-Zygmund decomposition of the function f on the
level t/4d such that {Mf > t} ⊂ ∪j3Qj from this decomposition. We
already know that Ap implies (2) which implies doubling. Thus∫

Mf>t

w(x)dx ≤ C
∑
j

∫
Qj

w(x)dx ≤ CKp

∑
j

(
1

|Qj|

∫
Qj

|f |

)−p ∫
Qj

|f |pw.

Since Qj are from the Calderón-Zygmund decomposition, we can estimate
the first factor by 4pdt−p. Then∫

Mf>t

w(x)dx ≤ CKp4
pdt−p

∫
|f(x)|pw(x)dx.
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