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Notes after yesterday’s lecture

In the Friday lecture, I introduced a very slight variant of the Crandall–Tartar
lemma (here in abbreviated form):

Lemma 1 (Crandall–Tartar). If 𝐷 ⊆ 𝐿1(Ω) is closed under the pointwise
maximum operator ∨ and 𝑇∶ 𝐷 → 𝐿1(Ω) satisfies

∫
Ω

𝑇 (𝜙) = ∫
Ω

𝜙 + 𝑐 (𝜙 ∈ 𝐷), (•)

then the following are equivalent:

(i) for all 𝜙, 𝜓 ∈ 𝐷, 𝜙 ≤ 𝜓 ⇒ 𝑇 (𝜙) ≤ 𝑇 (𝜓),

(ii) for all 𝜙, 𝜓 ∈ 𝐷, ∫
𝜔

(𝑇 (𝜙) − 𝑇 (𝜓))+ ≤ ∫
𝜔

(𝜙 − 𝜓)+,

(iii) for all 𝜙, 𝜓 ∈ 𝐷, ∫
𝜔

∣𝑇 (𝜙) − 𝑇 (𝜓)∣ ≤ ∫
𝜔

|𝜙 − 𝜓|𝑒.

The “slight variant” here is the additive constant 𝑐, which I think could be useful in
some applications.

Proof. The equivalence of (ii) and (iii) follows trivially from (•) and the identity
𝑎+ = 1

2 (|𝑎| + 𝑎).
To show that (i) implies (ii), we rewrite (ii) as

∫
Ω

(𝑇 (𝜙) ∨ 𝑇 (𝜓) − 𝑇 (𝜓)) ≤ ∫
Ω

(𝜙 ∨ 𝜓 − 𝜓).

Note that 𝜙, 𝜓 ≤ 𝜙 ∨ 𝜓, so (i) yields 𝑇 (𝜙), 𝑇 (𝜓) ≤ 𝑇 (𝜙 ∨ 𝜓), and therefore
𝑇 (𝜙) ∨ 𝑇 (𝜓) ≤ 𝑇 (𝜙 ∨ 𝜓), and so 𝑇 (𝜙) ∨ 𝑇 (𝜓) − 𝑇 (𝜓) ≤ 𝑇 (𝜙 ∨ 𝜓) − 𝑇 (𝜓), which
we integrate, using (•) on the right hand side to obtain the desired inequality.

Conversely, if (ii) holds and 𝜙 ≤ 𝜓 then (𝜙 − 𝜓)+ = 0, so (ii) implies
(𝑇 (𝜙) − 𝑇 (𝜓))+ = 0, and so (i) holds.

On second thought, we could generalise the Crandall–Tartar lemma further: Just
assume 𝐷 ⊆ ℳ(Ω) (the set of measurable, real-valued functions on Ω) and 𝑇∶ 𝐷 →
ℳ(Ω) with the requirements that 𝜙 − 𝜓 ∈ 𝐿1(Ω) and 𝑇 (𝜙) − 𝑇 (𝜓) ∈ 𝐿1(Ω) for all 𝜙,
𝜓 ∈ 𝐷, and replace (•) by

∫
Ω

(𝑇 (𝜙) − 𝑇 (𝜓)) = ∫
Ω

(𝜙 − 𝜓) (𝜙, 𝜓 ∈ 𝐷).

With this formulation, the lemma is directly applicable to the common situation where
𝐷 ⊆ 𝐿1

loc(ℝ) and the functions in 𝐷 are all identical for large values of |𝑥|.



The proof of Lemma 2.11:

First of all, I should make clearer a remark I made at the beginning: The book
says “Assume that 𝑢𝑙 ≤ 𝑢𝑟; the case 𝑢𝑙 ≥ 𝑢𝑟 is similar.” My point is that you
don’t have to redo the proof for the second case: Just note that if 𝑢 solves
𝑢𝑡 +𝑓(𝑢)𝑥 = 0, then 𝑢̃ = −𝑢 solves 𝑢̃𝑡 + ̃𝑓(𝑢̃)𝑥 = 0, where ̃𝑓(𝑢̃) = −𝑓(−𝑢̃). This
is true even for the Kružkov condition (2.22). This substitution will, of course,
transform the second case to the first. (It will also transform the upper concave
envelope to the lower convex envelope.)

I admit I got a bit confused by the way the proof is organised, first proving it
for convex flux functions and then for the general case. What I had not noticed
on my first reading is that a stronger result was proved in the convex case, and
that this stronger result is needed for the general case. I am talking about the
first equality in (2.17):

‖𝑢( ⋅ , 𝑡) − 𝑣( ⋅ , 𝑡)‖𝐿1 = 𝑡 ∫
𝑢𝑟

𝑢𝑙

|𝑓 ′ − 𝑔′| 𝑑𝑢 = 𝑡 TV[𝑢𝑙,𝑢𝑟](𝑓 − 𝑔).

(We won’t need the formulation in terms of total variation, but I thought it
worth mentioning.) This is then utilised in the general case, resulting in

‖𝑢( ⋅ , 𝑡) − 𝑣( ⋅ , 𝑡)‖𝐿1 = 𝑡 ∫
𝑢𝑟

𝑢𝑙

|𝑓 ′
⌣ − 𝑔′

⌣| 𝑑𝑢
∗
≤ 𝑡 ∫

𝑢𝑟

𝑢𝑙

|𝑓 ′ − 𝑔′| 𝑑𝑢.

The final step, then, is to note that in general

∫
𝑏

𝑎
|ℎ′(𝑢)| 𝑑𝑢 ≤ (𝑏 − 𝑎)‖ℎ‖Lip

for any piecewise differentiable Lipschitz function ℎ, since |ℎ′| ≤ ‖ℎ‖Lip.

The inequality
∗
≤ above came from an application of the Crandall–Tartar lemma.

I did not have time for this proof in the lecture. Also, the proof in the book is
unfortunately not correct. The mistake is minor, however, and easily corrected:

(See the next page.)



What we have to prove is the condition (i) in the Crandall–Tartar lemma, which
in this case states that if 𝑓 and 𝑔 are continuous and piecewise linear functions
with 𝑓 ′ ≤ 𝑔′ on [𝑢𝑙, 𝑢𝑟], then 𝑓 ′

⌣ ≤ 𝑔′
⌣ on [𝑢𝑙, 𝑢𝑟]. Note that these convex

envelopes are defined with respect to the interval [𝑢𝑙, 𝑢𝑟], so that 𝑓⌣(𝑢𝑙) = 𝑓(𝑢𝑙)
and 𝑓⌣(𝑢𝑟) = 𝑓(𝑢𝑟), and the same for 𝑔.

Assume, for contradiction, that 𝑓 ′
⌣ > 𝑔′

⌣ at some point in [𝑢𝑙, 𝑢𝑟]. Since
these functions are piecewise constant, we can join together one or more con-
secutive intervals where the inequality holds, into a maximal interval [𝑢1, 𝑢2] ⊆
[𝑢𝑙, 𝑢𝑟] so that 𝑓 ′

⌣ > 𝑔′
⌣ everywhere in (𝑢1, 𝑢2) except for the breakpoints.1

If 𝑢1 > 𝑢𝑙, then as we cross 𝑢 = 𝑢1 from the left to the right, we transition
from 𝑓 ′

⌣ ≤ 𝑔′
⌣ to 𝑓 ′

⌣ > 𝑔′
⌣. Since both functions are non-decreasing, this can

only happen by 𝑓 ′
⌣ becoming larger. Thus 𝑢1 is a breakpoint for 𝑓⌣, implying

𝑓⌣(𝑢1) = 𝑓(𝑢1). If 𝑢1 = 𝑢𝑙, we already have this equality.2
A similar argument yields 𝑔⌣(𝑢2) = 𝑔(𝑢2).
Integrating the inequalities 𝑓 ′ ≤ 𝑔′ and 𝑓 ′

⌣ > 𝑔′
⌣ over [𝑢1, 𝑢2] yields

𝑓(𝑢2) − 𝑓(𝑢1) ≤ 𝑔(𝑢2) − 𝑔(𝑢1),
𝑓⌣(𝑢2) − 𝑓⌣(𝑢1) > 𝑔⌣(𝑢2) − 𝑔⌣(𝑢1).

Subtracting these inequalities, we get

𝑓(𝑢2) − 𝑓⌣(𝑢2) < 𝑔⌣(𝑢1) − 𝑔(𝑢1),

which is a contradiction, since the left hand side is nonnegative and the right
hand side is nonpositive.

1Here is the mistake in the book: The construction there risks including intervals in the
middle where the inequality fails.

2The book does not consider this special case.


