MA 8102 - SPRING 2021

Topics for the exam

- (1) Definition of measure-preserving and ergodic maps, examples.
- (2) Poincaré's recurrence theorem
- (3) Associated isometry U_T and its properties.
- (4) Equivalent formulations for map to be measure-preserving and ergodic
- (5) Maximal ergodic theorem
- (6) Birkhoff ergodic theorem and its applications. Normal numbers.
- (7) One-sided and two-sided shifts.
- (8) Weak-mixing and strong-mixing maps, equivalent formulations, examples.
- (9) Measure-preserving maps on compact groups, characters, ergodicity.
- (10) Rotations and endomorphisms of compact groups.
- (11) Isomorphism, conjugacy and spectral isomorphism of spaces and maps, examples.
- (12) Measure preserving transformations with countable Lebesgue spectrum
- (13) Spectral invariants
- (14) Eigenvalues and eigenfunctions of U_T
- (15) Measure-preserving transformations with discrete spectrum.
- (16) Entropy of a mesure-preserving transformation
- (17) Kolmogorov-Sinai theorem
- (18) Entropy of rotations on the compact group

Problems and questions

Problem 1. Let (X, \mathcal{B}, m) be a measure space, where X = [0, 1), \mathcal{B} is Borel σ - algebra, and m is Borel measure. Let $T: X \to X$ be a map given by $Tx = (x+a) \mod 1$ for some $a \in X$. For each $A \in \mathcal{B}$ find $T^{-1}(A)$. Prove that T is measure-preserving.

Problem 2. Let $T : [0,1) \to [0,1)$ be a map given by $Tx = 3x \mod 1$. For each $A \in \mathcal{B}$ find $T^{-1}(A)$. Prove that T preserves Borel measure.

Problem 3. Let $T : [0,1) \to [0,1)$ be a map given by $Tx = 1/x \mod 1$. For each interval $(a,b) \subset (0,1)$ find $T^{-1}((a,b))$. Prove that T preserves the measure

$$\mu(A) = \int_A \frac{1}{1+x} dm,$$

where m is Borel measure.

Problem 4. Let $T : [0,1) \to [0,1)$ be a map given by $Tx = 1/x^2 \mod 1$. Find an atomic measure μ on [0,1) for which T is measure-preserving.

Problem 5^{*} Do exist a such measure, which is absolutely continuous with respect to Borel measure?

Problem 6. Let $T : [0,1] \rightarrow [0,1]$ be a map given by Tx = 4x(1-x). Find an absolute continuous measure μ on [0,1] for which T is μ -invariant.

Problem 7. Prove that maps from Problem 1-2 are ergodic.

Problem 8^{*} Prove that the map from Problem 3 is ergodic.

Problem 9. Let K be the set |z| = 1 in \mathbb{C} . Find all $n \in \mathbb{Z}$ for which $Tz = z^n$ is strong mixing.

Problem 10. Let $x = 0.a_1a_2...$ be a ternary presentation of a number $x \in [0, 1]$. Prove that the limit

$$\lim_{N \to \infty} \frac{|\{n \in [1, N] : a_n = a_{n+1} = 2\}|}{N}$$

exists for almost all $x \in [0, 1]$. Find this limit.

Problem 11. Prove that if $T: X \to X$ is a bijective measure-preserving map then U_T is surjective.

Problem 12. Let $\gamma : S_3 \to K$ be a character (that is a map which preserves group operations) such that $\gamma((12)) = 1$. Prove that $\gamma(a) = 1$ for all $a \in S_3$.

Problem 13. Prove that the maps $T_1x = 3x \mod 1$ and $T_2z = z^3$ are isomorphic. Construct an isomorphism $\varphi : [0, 1) \to K$.

Problem 14^{*} Prove that maps $T_1, T_2 : K \to K$ given by $T_1z = z^2$ and $T_2z = z^3$ are spectrally isomorphic.

Problem 15^{*} Let $T_1, T_2 : K^2 \to K^2$ be two maps given by $T_1(z_1, z_2) = (z_1^{m_{11}} z_2^{m_{12}}, z_1^{m_{21}} z_2^{m_{22}})$, and $T_2(z_1, z_2) = (z_1^{n_{11}} z_2^{n_{12}}, z_1^{n_{21}} z_2^{n_{22}})$. When they are spectrally isomorphic?

Problem 16. Find a map with positive entropy which is ergodic but not weak-mixing.

Problem 17. Find a map with infinite entropy.

Problem 18. Let $T : K^2 \to K^2$ be a map given by $T(z_1, z_2) = (a_1 z_1, a_2 z_2)$, where $a_1, a_2 \in K$. Find H(T).