MA3408 Week 12 Drew Heard (drew.k.heard@ntnu.no) March 29, 2022

Question 1.

If $f: Y \to X$ is a continuous map and $\pi: E \to X$ is a U(n)-bundle, then $c_i(f^*\pi) = f^*c_i(\pi)$ for any i.

Remark: Note that f^* has two different meanings here, once as a vector bundle pullback, and once as the pullback of a cohomology class.

Question 2.

Let $\pi_{\mathbb{R}}$ denote the underlying real bundle of a complex bundle; note that if π has rank n as a complex bundle, then $\pi_{\mathbb{R}}$ has rank 2n as a real bundle. Via the map $\mathbb{Z} \to \mathbb{Z}/2$ the class $c_i(\pi) \in H^{2i}(X;\mathbb{Z})$ determines a cohomology class $\bar{c}_i(\pi) \in H^{2i}(X;\mathbb{Z}/2)$. Show that the Stiefel–Whitney classes of $\pi_{\mathbb{R}}$ are computed as follows:

1. $\omega_{2i}(\pi_{\mathbb{R}}) = \overline{c}_i(\pi)$ for $0 \le i \le n$.

2. $\omega_{2i+1}(\pi_{\mathbb{R}}) = 0$ for any integer *i*.

Hint: Let $\mu_n: U(n) \to O(2n)$ be the inclusion, then compute

 $\mu_n^* \colon H^*(O(2n); \mathbb{Z}/2) \cong \mathbb{Z}/2[c_1, c_2, \dots, c_n] \to H^*(U(n); \mathbb{Z}/2) \cong \mathbb{Z}/2[w_1, w_2, \dots, w_{2n}].$