Ween 10
Exercése: Suppose I have a maploun af flee bandles $E^{\prime} \xrightarrow{q^{\prime}} E$

Assocuated burdle
Let (π, P, B) be a principal
G-burabe, \& let $e: G \longrightarrow \operatorname{Ant}(T)$ a leff action on a space F.
Then the produet $P \times F$ has a carouccal right actron

$$
\frac{g^{-1} \cdot f}{e\left(g^{-1}\right) \cdot f}
$$

Prop: The quotrent of P×F by G defives a biber buralle over B with fiber F by

$$
\begin{array}{r}
p \times F=(p \times F) / G \xrightarrow{\pi_{F}} B \\
{[p, f] \longmapsto \pi(p)}
\end{array}
$$

This is called the associate ed fiber bundle. If P is trivial as a G-bundle, then $P x_{G} F$ is trivial for any F.

Proof: We frost check that π_{F} is well-detined. Suppose that $\left[p^{\prime}, f^{\prime}\right]$ w another representative is this equivalence class. Then $p^{\prime}=p \cdot g$ for some $g \in G$

$$
\begin{aligned}
& f^{\prime}=g^{-1} \cdot f \\
& \pi_{F}\left(\left[p^{\prime}, f^{\prime}\right]\right)=\pi_{F}\left(\left[p \cdot g \cdot g^{-1} \cdot f\right]\right) \\
&=\pi_{(p \cdot g)} \\
&=\pi(p) \\
&=\pi_{R}([p, €])
\end{aligned}
$$

We claim that the fibers of $P X_{G} F$ are homeomorphic to F. To see this, fix a point $b \in B, \&$ Choose a point $p_{0} \in \pi^{-1}(b)$ in the fiber of P over B. We define a cts map

$$
\begin{aligned}
& F \longrightarrow \pi_{F}^{-1}(b) \\
& f \longmapsto\left[p_{0}, f\right]
\end{aligned}
$$

This has a cts nurse given by

$$
\begin{aligned}
& \pi_{p}^{-1}(b) \longrightarrow F \\
& {[p, f] \longmapsto \tau\left(p_{0}, p\right) \cdot f}
\end{aligned}
$$

where $\tau\left(p_{0}, p\right) \in G$ is the unque element such that $P_{0} \cdot \tau\left(p_{0}, P\right)=P$.

$$
[p, f] \longmapsto\left[p, \frac{\tau\left(p_{0}, p_{0}\right)}{e} \cdot t\right]
$$

The $\operatorname{map} \quad \pi^{-I}(B) \times F \circ(p, f) \longmapsto \tau\left(p_{0}, p\right) \cdot f \in F$ is invariant with respect to the G-actios

$$
\begin{aligned}
&(p ; f) \cdot g=\left(p \cdot g, g^{-1} \cdot f\right) \\
& \longmapsto \tau\left(p_{0}, p \cdot g\right) g^{-1} \cdot f \\
&=\tau\left(p_{0}, p\right) \cdot g \cdot g^{-1} \cdot f \\
&=\tau\left(p_{0}, p\right) \cdot f
\end{aligned}
$$

\& here this descencls to the quotient

$$
\pi-7(B) \times r / C=\pi_{F}^{-1}(B) .
$$

To frosh the proof it suffices to prove the final claims: finality of P implies triviality of $P x_{G} F$. Hence we car assume $P=B \times G$.
Then $(P \times F) / G=(B \times G \times F) / G$ This is isomoplie to $B \times F$

$$
([b, g, f]) \longmapsto(b, g \cdot f)
$$

with inverse

$$
(b, f) \longmapsto[(b, e, f)] \text {. }
$$

Remark (struative group of a bundle)
Suppose B is covered by a collection sets $\left\{U_{\alpha}\right\}$ with local trivializations

$$
\psi_{\alpha}: U_{\alpha} \times F \xrightarrow{\cong} \phi^{-1}\left(U_{\alpha}\right)
$$

Let's compare the local trivializations on the intersection $U_{\alpha} \cap \cup_{\beta}$

$$
\begin{aligned}
& U_{\alpha} \cap \cup_{\beta} \times F \xrightarrow[\psi_{\beta}]{\cong} p^{-1}\left(U_{\alpha} \wedge v_{\beta}\right) \\
& \xlongequal{\wedge} \|_{\alpha}^{-1} \\
& \lambda U_{\alpha} \wedge U_{B} \times F
\end{aligned}
$$

For every $x \in U_{\alpha} \cap U_{\beta}$, we obtains a homeomorphism of the fiber F,
a map

$$
\varphi_{\alpha, \beta}: U_{2} \cap U_{\beta} \longrightarrow A u t(\not)
$$

These are called clutching functions.
If the bale is on u-dimesioncal vector-bundbe, then the clutching functions take the form

$$
\varphi_{\alpha, \beta} i U_{\alpha} \wedge \cup_{B} \longrightarrow C l(\Omega, \mathbb{F})
$$

If $p: E \longrightarrow B$ u a principal G-bundle, then the clutching functions take values io G :

$$
\varphi_{\alpha, \beta}: U_{\alpha} \wedge U_{B} \longrightarrow G \subset \operatorname{Aut}(F)
$$

In general, a fiber bundle with strue tue group $G \quad \hat{w}$ one whose clutching functions of che values in G.

Prop: Gives any fiber bundle
$\pi: E \longrightarrow B$ with fiber F \& structwe group Ant (E), there exists a principal $C_{i}=$ Au (F)-bundle P such that $E=P \times F$.

Proof: For $b \in B$, define

$$
P_{b}=\underbrace{\left\{G \text {-iomorplions } \varphi: F \longrightarrow \pi^{-1}(b)\right\}}_{\text {set of frames }}
$$

This has ar action of 6 on the right

$$
\varphi \cdot g: F \longrightarrow \pi^{-1}(b)
$$

is also a a-iomorplims
This is a free Δ transitive action: cry two $\theta_{c} \varnothing^{\prime}: F \longrightarrow \pi^{-7}(b)$
are related by $g=\varphi^{-1} \cdot \varphi \in G=\operatorname{Ant}(P)$.
Define

$$
P=\bigcup_{b \in B} P_{b}
$$

4 define $\pi_{p}: p \longrightarrow B$

$$
P \in P_{b} \longmapsto b
$$

Suppose $E=B \times F$, then $\pi^{-1}(b)=\langle b\rangle \times F$ \& canonically, $P_{b} \cong a$. This is this cause $P=\bigcup_{b \in B} P_{b}=\bigcup_{b \in B}\{b\} \times G$

$$
=B \times G
$$

In the general case we do the some construction over local trinligations.

To see that $P X_{G} F \cong E$, note that points in $P X_{a} F$ are equivalences cleores $[b, \varphi, f]$ whee $b \in B, \quad D: F \longrightarrow \pi^{-1}(b)$ \bar{j} a G-somosplísn $\quad \Delta f \in F$.

Now consider

$$
P x_{a} F \partial[b, \varphi, f] \longmapsto \varphi(t) \in E .
$$

This is well-defined

$$
\begin{aligned}
{\left[b, \varphi \cdot g, g^{-1} \cdot f\right] \longmapsto } & \longmapsto\left(g \cdot v^{-1} f\right) \\
& =\varphi(f)
\end{aligned}
$$

Because φ is an womosplism, this gives the bundle womorphum.

Notation: F is a space with a lett a-action, $a i^{\text {cts }}$ map $f: P \longrightarrow F$ is G-equivarart if $f(p \cdot g)=v^{-2} \cdot f(p)$. We denote th set of sun maps by $\operatorname{Map}_{G}(P, F)$.

Prop: Let (π, p, B) be a principal G-burdle, F a space with a lett G-action, $\Delta E=P X_{a} F$ the associated bundle. Then there is a bijection

$$
\Gamma(u, E) \rightleftarrows \operatorname{Map}_{G}\left(\pi^{-I}(u), F\right)
$$

Proof: Given $\hat{s} \in \operatorname{Map}_{G}\left(\pi^{-1}(u), F\right)$ define

$$
s(b):=[p, \hat{s}(p)]
$$

This is wed-defired

$$
\begin{aligned}
{[p \cdot g, \tilde{s}(p \cdot g)] } & =\left[p \cdot g, g^{-1} \tilde{s}(p)\right] \\
& =[p, \tilde{s}(p)]
\end{aligned}
$$

Conversely, let $s: U \longrightarrow E$ be a local section. suppose $S(\pi(p))=[p, t]$
Define

$$
\begin{aligned}
\tilde{s}: \pi^{-1}(0) & \longrightarrow F \\
p \longmapsto & \longmapsto
\end{aligned}
$$

To see this is G-eguvariant

$$
\tilde{s}(p \cdot g)=g^{-1} \cdot \tilde{s}(p)
$$

because

$$
\begin{aligned}
s(H(p \cdot g)) & =s(\pi(p)) \\
& =[p, f] \\
& =\left[p \cdot g, g^{-1} \cdot f\right]
\end{aligned}
$$

From the detutions s \& \hat{s} are nurse bijections. Also, s cts $\Leftrightarrow \hat{s}$ cts
Prop: Fix a group a. Let (π, P, B) \& $\left(\pi^{\prime}, Q, B^{\prime}\right)$ be principal C-bundles over B \& B^{\prime}, Then there is a bijection between bundle morphisms $\theta!(\pi, D, B) \rightarrow\left(\pi!, Q_{2} B^{\prime}\right)$ \triangle sections of the associated

Q is a lett a-space P) with action $g \cdot q=q \cdot g^{-1}$.
buale $P \times{ }_{G} Q$
Proot: A moppliym as above is speictied by a G-map $\varnothing: P \longrightarrow Q$ ie. a elemert $\operatorname{Map}_{4}(P, Q)$.

$$
\operatorname{Map}_{G}(P, Q)=\operatorname{Map}_{G}\left(\pi^{1}(B), Q\right)
$$

$[$ Prevas prop $\Rightarrow]=\Gamma\left(B, P x_{c} Q\right)$.

Hlomotopy clossification of prinapal bundles
Prop: If $\left(\pi, P, B^{\prime}\right)$ a principar) G -burale, \& $f_{0} \sim f_{1}: B \longrightarrow B^{\prime}$, then $f_{0}^{\gamma}(t)$ \& $f_{1}^{\gamma}(\pi)$ are Torosphiè as budles over B

Rem: Use the assoccated burdle
constructions, an prove it holds for on fiber bundle.
Exercise: Fiber bundles or a contractible base space are trivial.
Proof of proposition:
Let $f_{t}: B \times I \longrightarrow B$ be a homotopy between fo \& f_{1}, Now consider the following diagram:

Claim: For a principal G-bundle $(\pi, Q, B \times I)$ we have $i_{0}^{\gamma} \pi \simeq i_{1}^{\gamma} \pi$

$$
\begin{aligned}
& i_{0}: B \times S 03 \longrightarrow B \times I \\
& i_{7}: B \times\{I\} \longrightarrow B \times I
\end{aligned}
$$

This will complete the proof as then

$$
f_{0}^{\gamma} \pi \simeq i_{0}^{\gamma} f_{t}^{\alpha} \pi \simeq i_{1}^{\gamma} f_{t}^{\gamma} \pi \simeq f_{1}^{\gamma} \pi
$$

Proof of the claim:

We claims in fact that

$$
\pi \cong \pi_{0} \times d d_{I}
$$

If this holds, the

$$
\begin{aligned}
\left.Q\right|_{B \times\{13} & =i_{7}^{7} \uparrow \\
& =\left.\left(Q \times I_{0}\right)\right|_{B \times I} \simeq i_{0}^{\gamma} \pi
\end{aligned}
$$

Sice we work with principorl a-bouales morptisms over a fired base are womorptisms. Theretore it suffeas to produe a monolisy

By the previow proposution, thes corropuals to a section of the burale

$$
\omega: Q \times{ }_{G}\left(Q_{0} \times I\right) \longrightarrow B \not \subset I .
$$

Now, by detinition, $Q x_{a}\left(Q_{0} \tau I\right)$ has a sectics 1 over $B \times\{03$. Now consider the following diagrong
$\left.Q\right|_{B \times\{03} \& Q_{0 \times I} l_{B \times 503}$ ae both just Q_{0}.

We wart to find a lift \tilde{s} is this diagram. The lift \widehat{S} exults by the homotopy lifting property, because ω is a filiation.

Rem: $S(B)=$ set of principal C-bmales over B. This is functorial with respect to cts mops $f: A \longrightarrow B$

$$
p \longmapsto f^{\infty}(p)
$$

The previous proposition slows that G descercls to the homotory category.

$$
G: h \text { Top } \longrightarrow\left\{\begin{array}{c}
\text { pincypal G-budens } \\
\text { up to somorplonn }
\end{array}\right\}
$$

