## MA3408 Week 10

Drew Heard (drew.k.heard@ntnu.no)

March 23, 2021

## Question 1.

Show that a fibre bundle over a contractible base space is trivial.

*Proof.* Let  $\pi: E \to B$  be a fiber bundle with B contractible. Let  $f: B \to B$  be a map taking the whole space B to a point  $b \in B$ . Then f and  $\mathrm{id}_B$  are homotopic by assumption. Therefore, the bundles  $f^*\pi$  and  $\mathrm{id}_B^*\pi$  are isomorphic (by the proposition we did in class). Obviously  $\mathrm{id}_B^*\pi \cong \pi$ , while  $f^*\pi$  is a trivial bundle.  $\Box$ 

## Question 2.

If



is a morphism of principal G-bundles, then  $\pi' \cong f^*\pi$  as bundles over B.

**Remark:** More generally, it should hold whenever the morphism is a fiberwise isomorphism (I think!).

Proof. It is enough to construct a G-map  $E' \to f^*E$ , as this gives a principal G-bundle morphism over B, which is an isomorphism (principal G-bundle morphisms over a fixed base are isomorphisms). We define such a map  $h: E' \to f^*E$  sending  $e' \mapsto (\pi'(e'), \tilde{f}(e')) \in B' \times E$ . We need to check that this is well-defined, i.e.  $f \circ \pi'(e') \cong \pi \circ \tilde{f}(e')$ , but this hold because the diagram is assumed to commute. Finally this is a G-map by definition of the actions.

## Question 3.

Show that there are exactly two principal SO(3)-bundles over  $S^2$ .

*Proof.* By the classification theorem we have that these are classified by  $\pi_2(BSO(3)) \cong \pi_1(SO(3))$ . Then we note that SO(3) is homeomorphic to  $\mathbb{R}P^3$ , to deduce that  $\pi_2(BSO(3)) \cong \mathbb{Z}/2$  so that (up to isomorphism) there are two such bundles.