Introduction to Lie theory

Material for week 4

Alexander Schmeding

09. September 2024

What we learned so far...

For $M \in M_n(\mathbb{K})$ we define the matrix exponential

$$e^M := \sum_{k=0}^{\infty} \frac{M^k}{k!}$$

We already know that for $X, Y \in M_n(\mathbb{K})$

- If XY = YX then $e^{X+Y} = e^X e^Y$
- The map $\varphi_X \colon \mathbb{R} \to \mathsf{GI}_n(\mathbb{K}), \varphi_X(t) = e^{tX}$ is a 1-parameter group.
- $\exp: M_n(\mathbb{K}) \to Gl_n(\mathbb{K}), \exp(X) = e^X$ is smooth.
- We can find (arbitrarily small) neighborhoods U of 0 and VI_n such that $\exp |_U^V$ is a diffeomorphism.

The matrix logarithm

Definition 1.4.10

If U, V is a pair of neighborhoods such that exp restricts to a diffeomorphism on them, we set

$$\log_V \colon V \to U, \quad g \mapsto (\exp|_U)^{-1}(g)$$

and call this function the $matrix\ logarithm$ on V. We will write also log if the set V is not important for the argument.

One can show that

$$\log_V(g) = \log_V(I_n + (g - I_n)) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} (g - I_n)^k$$

however, we shall not use this identity.

All 1-parameter groups are smooth!

Recall that we defined a 1-parameter group as a **continuous** group morphism $\gamma \colon (\mathbb{R},+) \to \mathsf{GI}_n(\mathbb{K})$.

We shall now show that these morphisms are indeed smooth!

Theorem 1.4.11 (1-parameter group theorem)

Every 1-parameter group γ is of the form $\gamma(t)=e^{tX}$. So γ is smooth and completely determined by its derivative in 0.

Material from Appendix A.2

The mean value theorem in integral form

Vector valued integrals for $f: [a, b] \to \mathbb{R}^n$ with $f = (f_i)$

$$\int_{a}^{b} f(t) dt := \begin{bmatrix} \int_{a}^{b} f_{1}(t) dt \\ \vdots \\ \int_{a}^{b} f_{N}(t) dt \end{bmatrix}$$

Proposition A.2.10

Let $U\subseteq \mathbb{R}^n$ be open and $f\colon U\to \mathbb{R}^d$ be a C^1 -map. Assume that for $x,y\in U$ also the line segment

$$\overline{xy}:=\{\mathit{tx}+(1-\mathit{t})\mathit{y}\colon \mathit{t}\in[0,1]\}\subseteq\mathit{U}$$
, then

$$f(y) - f(x) = \int_0^1 \mathbf{d}f(x + t(y - x))(y - x)dt.$$

In words: f(y) - f(x) can be computed by integrating **d**f along \overline{xy}

Parameter integrals depend continuously on the parameter

Lemma A.2.9

Let a < b be real numbers, $U \subseteq \mathbb{R}^n$ be open and $f: [a, b] \times U \to \mathbb{R}^m$ continuous. Then

$$F: U \to \mathbb{R}^m, \quad F(u) := \int_a^b f(t, u) dt$$

is continuous. In particular,

$$\lim_{u\to u_0} F(u) = \int_a^b \lim_{u\to u_0} f(t,u) dt.$$

1.5 The Lie algebra of a linear Lie

group

The Lie algebra via the exponential

1.5.1 Definition

Let $G \subseteq Gl_n(\mathbb{K})$ be a linear Lie group. Then we define

$$\mathbf{L}(G) := \{ X \in M_n(\mathbb{K}) \mid \forall t \in \mathbb{R}, \exp(tX) \in G \}$$

and call this set the Lie algebra of G.

1.5.2 Lemma

The Lie algebra of a linear Lie group G is an \mathbb{R} -vector space.

1.5.3 Remark

In general L(G) will not be closed under multiplication with complex numbers, so it is not a \mathbb{C} -vector space.

Tools and definitions

Recall the (Lie-)Trotter product formula

$$\exp(X + Y) = \lim_{k \to \infty} \left(e^{X/k} e^{Y/k} \right)^k$$

1.5.6 Definition (Abstract Lie algebra)

Let L be a \mathbb{K} -vector space. A \mathbb{K} -bilinear map $[\cdot,\cdot]$: $L\times L\to L$ is called a $Lie\ bracket$ (over \mathbb{K}) if

- (L1) [x,x] = 0 for $x \in L$ and
- (L2) [x, [y, z]] = [[x, y], z] + [y, [x, z]] for $x, y, z \in L$ (Jacobi identity)

A Lie algebra (over \mathbb{K}) is a \mathbb{K} -vector space L, endowed with a Lie bracket. A subspace $E \subseteq L$ of a Lie algebra is called a *subalgebra* if $[E, E] \subseteq E$. A Lie algebra is said to be *abelian* of [x, y] = 0 holds for all $x, y \in L$.

(Homo-)morphisms of Lie algebras

A homomorphism $\varphi \colon L_1 \to L_2$ of Lie algebras is a linear map with $\varphi([x,y]) = [\varphi(x), \varphi(y)]$ for $x,y \in L_1$.

Abelian Lie algebra

Every \mathbb{K} -vector space is an abelian Lie algebra with the trivial Lie bracket.

The cross product (Exercise)

 \mathbb{R}^3 is a Lie algebra with respect to the cross product

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \times \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} := \begin{bmatrix} x_2y_3 - x_3y_2 \\ x_3y_1 - x_1y_3 \\ x_1y_2 - x_2y_1 \end{bmatrix}$$