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What we learned so far...

For M ∈ Mn(K) we define the matrix exponential

eM :=
∞∑

k=0

Mk

k!

We already know that for X , Y ∈ Mn(K)

• If XY = YX then eX+Y = eX eY

• The map φX : R → Gln(K), φX (t) = etX is a 1-parameter
group.

• exp: Mn(K) → Gln(K), exp(X ) = eX is smooth.
• We can find (arbitrarily small) neighborhoods U of 0 and V In

such that exp |VU is a diffeomorphism.



The matrix logarithm

Definition 1.4.10
If U, V is a pair of neighborhoods such that exp restricts to a
diffeomorphism on them, we set

logV : V → U, g 7→ (exp |U)−1(g)

and call this function the matrix logarithm on V . We will write
also log if the set V is not important for the argument.

One can show that

logV (g) = logV (In + (g − In)) =
∞∑

k=1

(−1)k+1

k (g − In)k

however, we shall not use this identity.



All 1-parameter groups are smooth!

Recall that we defined a 1-parameter group as a continuous group
morphism γ : (R, +) → Gln(K).

We shall now show that these morphisms are indeed smooth!
Theorem 1.4.11 (1-parameter group theorem)
Every 1-parameter group γ is of the form γ(t) = etX . So γ is
smooth and completely determined by its derivative in 0.



Material from Appendix A.2



The mean value theorem in integral form

Vector valued integrals for f : [a, b] → Rn with f = (fi)

∫ b

a
f (t)dt :=


∫ b

a f1(t)dt
...∫ b

a fN(t)dt


Proposition A.2.10
Let U ⊆ Rn be open and f : U → Rd be a C1-map. Assume that
for x , y ∈ U also the line segment
xy := {tx + (1 − t)y : t ∈ [0, 1]} ⊆ U, then

f (y) − f (x) =
∫ 1

0
df (x + t(y − x))(y − x)dt.

In words: f (y) − f (x) can be computed by integrating df along xy



Parameter integrals depend continuously on the parameter

Lemma A.2.9
Let a < b be real numbers, U ⊆ Rn be open and
f : [a, b] × U → Rm continuous. Then

F : U → Rm, F (u) :=
∫ b

a
f (t, u)dt

is continuous. In particular,

lim
u→u0

F (u) =
∫ b

a
lim

u→u0
f (t, u)dt.



1.5 The Lie algebra of a linear Lie
group



The Lie algebra via the exponential

1.5.1 Definition
Let G ⊆ Gln(K) be a linear Lie group. Then we define

L(G) := {X ∈ Mn(K) | ∀t ∈ R, exp(tX ) ∈ G}

and call this set the Lie algebra of G .

1.5.2 Lemma
The Lie algebra of a linear Lie group G is an R-vector space.

1.5.3 Remark
In general L(G) will not be closed under multiplication with
complex numbers, so it is not a C-vector space.



Tools and definitions

Recall the (Lie-)Trotter product formula

exp(X + Y ) = lim
k→∞

(
eX/keY /k

)k

1.5.6 Definition (Abstract Lie algebra)
Let L be a K-vector space. A K-bilinear map [ · , · ] : L × L → L is
called a Lie bracket (over K) if

(L1) [x , x ] = 0 for x ∈ L and
(L2) [x , [y , z ]] = [[x , y ], z ] + [y , [x , z ]] for x , y , z ∈ L (Jacobi

identity)

A Lie algebra (over K) is a K-vector space L, endowed with a Lie
bracket. A subspace E ⊆ L of a Lie algebra is called a subalgebra
if [E , E ] ⊆ E . A Lie algebra is said to be abelian of [x , y ] = 0
holds for all x , y ∈ L.



(Homo-)morphisms of Lie algebras

A homomorphism φ : L1 → L2 of Lie algebras is a linear map with
φ([x , y ]) = [φ(x), φ(y)] for x , y ∈ L1.

Abelian Lie algebra
Every K-vector space is an abelian Lie algebra with the trivial Lie
bracket.

The cross product (Exercise)
R3 is a Lie algebra with respect to the cross product

x1

x2

x3

 ×


y1

y2

y3

 :=


x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y1
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