MA3204 - Exercise 3

1. Let $f: R \rightarrow S$ be a ring morphism. Show that f induces a faithful functor $f^{*}: \operatorname{Mod} S \rightarrow \operatorname{Mod} R$.
2. Recall that a commutative monoid is a set X together with an operation $+: X \times X \rightarrow X$ which is commutative, associative, and has a identity element 0_{X}. Note that an element x of a monoid X will not necessarily have an inverse $-x$, so X will not necessarily be a group.
A pre-semiadditive category is a category \mathcal{C} together with a monoid structure on each Hom set $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ such that composite

$$
\operatorname{Hom}_{\mathcal{C}}(Y, Z) \times \operatorname{Hom}_{\mathcal{C}}(X, Y) \rightarrow \operatorname{Hom}_{\mathcal{C}}(X, Z) \quad(f, g) \mapsto f \circ g
$$

satisfies

$$
f \circ\left(g_{1}+g_{2}\right)=f \circ g_{1}+f \circ g_{2} \quad\left(f_{1}+f_{2}\right) \circ g=f_{1} \circ g+f_{2} \circ g
$$

and

$$
f \circ 0=0=0 \circ g .
$$

Similarly to a preadditive category, we can define the biproduct of two objects in a pre-semiadditive category. A pre-semiadditive category is called semiadditive if it has a zero object and the biproduct of any two objects exists. Consider the following assertions:
(i) \mathcal{C} is an semiadditive category;
(ii) \mathcal{C} is a category that has a zero object $0_{\mathcal{C}}$ and all finite coproducts and products, and such that the canonical map

$$
x_{1} \coprod x_{2} \coprod \cdots \coprod x_{n} \rightarrow x_{1} \prod x_{2} \prod \cdots \prod x_{n}
$$

from a finite coproduct to a finite product is an isomorphism. (here the canonical map is given by the identity map $X_{i} \xrightarrow{\text { id }} X_{i}$ for
$1 \leq i \leq n$ and by the map $X_{i} \rightarrow 0_{\mathcal{C}} \rightarrow X_{j}$ factoring through the zero-object when $i \neq j$)

The goal of this exercise is to show that these two statements are equivalent
(a) Assume (ii). Identify the coproduct $X_{1} \coprod X_{2} \amalg \cdots \coprod X_{n}$ with the product $X_{1} \prod X_{2} \Pi \cdots \prod X_{n}$ via the canonical isomorphism and denote it $X_{1} \oplus X_{2} \oplus \cdots X_{n}$. Similarly to an additive category, a map $X_{1} \oplus X_{2} \oplus \cdots X_{n} \rightarrow Y_{1} \oplus Y_{2} \oplus \cdots \oplus Y_{m}$ can be written as a $m \times n$-matrix with the (i, j)-entry an element in $\operatorname{Hom}_{\mathcal{C}}\left(X_{j}, Y_{i}\right)$. Consider the following maps:

- For any X in \mathcal{C}, define $\Delta_{X}:=\binom{\operatorname{id}_{X}}{\operatorname{id}_{X}}: X \longrightarrow X \oplus X$ such that the projection maps π_{1} and π_{2} from the product structure satisfy $\pi_{1} \Delta_{X}=\pi_{2} \Delta_{X}=\operatorname{id}_{X}$;
- For any X in \mathcal{C}, define $\nabla_{X}:=\left(\mathrm{id}_{X} \quad \mathrm{id}_{X}\right): X \oplus X \longrightarrow X$ such that embedding maps ι_{1} and ι_{2} from the coproduct structure satisfy $\nabla_{X} \iota_{1}=\nabla_{X} \iota_{2}=\mathrm{id}_{X}$.
- For any f and g in $\operatorname{Hom}_{\mathcal{C}}(X, Y)$, define

$$
f \oplus g:=\left(\begin{array}{ll}
f & 0 \\
0 & g
\end{array}\right): X \oplus X \longrightarrow Y \oplus Y
$$

as the unique map for which $\pi_{1}(f \oplus g) \iota_{1}=f, \pi_{2}(f \oplus g) \iota_{2}=g$, $\pi_{1}(f \oplus g) \iota_{2}=0$ and $\pi_{2}(f \oplus g) \iota_{1}=0$, where π_{1} and π_{2} are the projections of $Y \oplus Y$ in the first and second component, respectively, and ι_{1} and ι_{2} are the embeddings into $X \oplus X$ in the first and second component, respectively.

- For any f and g in $\operatorname{Hom}_{\mathcal{C}}(X, Y)$, define $f+g$ in $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ as the composition $\nabla_{Y}(f \oplus g) \Delta_{X}$.
Prove that the operation + defines a structure of a commutative monoid in $\operatorname{Hom}_{\mathcal{C}}(X, Y)$.

Hint:

- Let $0 \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$ be the unique morphism which factors through the zero object. To show that this is the neutral element under + , use that $f \oplus 0$ can be written as a composite

$$
X \oplus X \rightarrow X \oplus 0 \rightarrow Y \oplus 0 \rightarrow Y \oplus Y
$$

and use that $X \oplus 0 \cong X$ and $Y \oplus 0 \cong Y$.

- For commutativity of + use that we have a commutative diagram

where $\tau=\left(\begin{array}{cc}0 & \mathrm{id} \\ \mathrm{id} & 0\end{array}\right)$
- For associativity of + use that the morphisms $(f+g)+h$ and $f+(g+h)$ are both equal to the composite

$$
X \xrightarrow{\left(\begin{array}{l}
\mathrm{id}_{X} \\
\mathrm{id}_{X} \\
\mathrm{id}_{X}
\end{array}\right)} X \oplus X \oplus X \xrightarrow{\left(\begin{array}{ccc}
f & 0 & 0 \\
0 & g & 0 \\
0 & 0 & h
\end{array}\right)} Y \oplus Y \oplus Y \xrightarrow{\left(\begin{array}{lll}
\mathrm{id}_{Y} & \operatorname{id}_{Y} & \operatorname{id}_{Y}
\end{array}\right)} Y
$$

(b) Prove that (ii) \Rightarrow (i).

Hint: Here you need to show that the addition as defined in (a) makes \mathcal{C} into a semiadditive category. For the identity

$$
f \circ\left(g_{1}+g_{2}\right)=f \circ g_{1}+f \circ g_{2}
$$

with $g_{1}, g_{2} \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$ and $f \in \operatorname{Hom}_{\mathcal{C}}(Y, Z)$, use that $f \circ \nabla_{Y}=$ $\nabla_{Z} \circ(f \oplus f)$. The identity $\left(f_{1}+f_{2}\right) \circ g=f_{1} \circ g+f_{2} \circ g$ is proved using a dual argument.
(c) Finally prove that (i) \Rightarrow (ii).

Hint: First show that the isomorphism between the empty product and coproduct just amounts to having a zero object. For $n \geq 2$ show that the n-product as defined in the lecture is both a product and a coproduct.

In particular, from (ii) we see that being a semiadditive category is a property of \mathcal{C}, and not an extra structure. More precisely, we may say that a given category is semiadditive or not, without specifying which monoid structure on the Hom-sets we are considering, since the monoid structure is forced upon us via the construction in (b).
3. Show that a semiadditive category \mathcal{C} is additive if and only if for all objects $X \in \mathcal{C}$ the map

$$
\left(\begin{array}{cc}
\operatorname{id}_{X} & \operatorname{id}_{X} \\
0 & \operatorname{id}_{X}
\end{array}\right): X \oplus X \rightarrow X \oplus X
$$

is an isomorphism. Conclude that being an additive category is a property of a category \mathcal{C}, and not a structure.
Hint: Let $\phi_{X}=: X \oplus X \rightarrow X \oplus X$ denote the inverse of $\left(\begin{array}{cc}\mathrm{id}_{X} & \mathrm{id}_{X} \\ 0 & \operatorname{id}_{X}\end{array}\right)$.
Show that $\phi=\left(\begin{array}{cc}\operatorname{id}_{X} & k \\ 0 & \operatorname{id}_{X}\end{array}\right)$ where k satisfies $k+\mathrm{id}_{X}=0$. Hence, k is an additive inverse of id_{X} so we can write $k=-\mathrm{id}_{X}$. Finally, show that for a morphism $f: X \rightarrow Y$ the composite $f \circ\left(-\mathrm{id}_{X}\right)$ is an additive inverse of f.
4. Show that \mathcal{A} is an abelian category if and only if $\mathcal{A}^{o p}$ is an abelian category.
5. Let $f: X \rightarrow Y$ be a morphism in an abelian category \mathcal{A}. Assume f is both a monomorphism and an epimorphism. Show that f must be an isomorphism (compare with Exercise 1 on Problem sheet 1).
Hint: Use that a monomorphism is a kernel of its cokernel, and that an epimorphism is a cokernel of its kernel.
6. Let \mathcal{A} and \mathcal{B} be abelian categories, and let (F, G) be an adjoint pair of additive functors $F: \mathcal{A} \rightarrow \mathcal{B}$ and $G: \mathcal{B} \rightarrow \mathcal{A}$. Show that F is right exact and G is left exact.
Hint: One way to prove this is to use that a left adjoint preserves colimits and a right adjoint preserves limits.
7. Let \mathcal{A} be category and let be \mathcal{I} a small category. Recall that we defined the functor category $\operatorname{Fun}(\mathcal{I}, \mathcal{A})$ in Exercise 7 on the last problem sheet. Show that the following hold:

- If \mathcal{A} is additive, $\operatorname{then} \operatorname{Fun}(\mathcal{I}, \mathcal{A})$ is additive.
- If \mathcal{A} is abelian, then $\operatorname{Fun}(\mathcal{I}, \mathcal{A})$ is abelian.
- If \mathcal{A} is abelian, then a sequence $F_{1} \xrightarrow{\eta} F_{2} \xrightarrow{\epsilon} F_{3}$ in $\operatorname{Fun}(\mathcal{I}, \mathcal{A})$ is exact if and only it is pointwise exact, i.e. $F_{1}(I) \xrightarrow{\eta_{I}} F_{2}(I) \xrightarrow{\epsilon_{I}}$ $F_{3}(I)$ is exact in \mathcal{A} for every $I \in \mathcal{I}$.

8. Let \mathcal{A} be an abelian category and let I be the set $\{1,2\}$ endowed with the partial order $1 \leq 2$.
(a) Let $\operatorname{Mor}(\mathcal{A})$ denote the category of morphisms of \mathcal{A}, i.e., the category whose objects are morphisms of \mathcal{A} and such that, for any two morphisms $f: X \longrightarrow Y$ and $g: W \longrightarrow Z, \operatorname{Hom}_{\operatorname{Mor}(\mathcal{A})}(f, g)$ is the set of all pairs $(h: X \longrightarrow W, i: Y \longrightarrow Z)$ such that $i f=g h$. Show that $\operatorname{Fun}(I, \mathcal{A})$ is equivalent to $\operatorname{Mor}(\mathcal{A})$.
(b) Show that the kernel and cokernel can be made into functors

Ker: $\operatorname{Mor}(\mathcal{A}) \rightarrow \operatorname{Mor}(\mathcal{A})$ and $\quad \operatorname{Coker}: \operatorname{Mor}(\mathcal{A}) \rightarrow \operatorname{Mor}(\mathcal{A})$.
(c) Show that Ker is right adjoint to Coker. Deduce that Ker is left exact and Coker is right exact.
(d) Use (c) to show the following: If

is a commutative diagram with exact rows, then taking kernels and cokernels we get exact sequences

$$
\begin{aligned}
& \quad 0 \rightarrow \operatorname{Ker} f_{1} \rightarrow \operatorname{Ker} f_{2} \rightarrow \operatorname{Ker} f_{3} \\
& \text { Coker } f_{1} \rightarrow \text { Coker } f_{2} \rightarrow \text { Coker } f_{3} \rightarrow 0
\end{aligned}
$$

in \mathcal{A}.
Hint: Use exercise 6
(e) Let \mathcal{A} be the category of vectors spaces $V^{\text {ect }} \mathbb{K}_{\mathbb{K}}$ over a field \mathbb{K} and let F be an object in $\operatorname{Fun}(I, \mathcal{A})$, i.e., F is completely described by two vector spaces $U:=F(1)$ and $V:=F(2)$ and a linear map $f:=F\left(a_{12}\right)$. Also let $R=T_{2}(\mathbb{K})$ be the ring of lower triangular 2×2 matrices over \mathbb{K}, with addition and multiplication given by
addition of matrices and multiplication of matrices. Consider the \mathbb{K}-vector space $\Phi(F):=F(1) \oplus F(2)$ and define the following action of the ring R on $\Phi(F)$
$\mu: R \times \Phi(F) \longrightarrow \Phi(F) \quad \mu\left(\left(\begin{array}{cc}\alpha & 0 \\ \beta & \gamma\end{array}\right),(u, v)\right)=(\alpha u, \beta f(u)+\gamma v)$
(i) Show that $\left(\Phi(F), \mu_{\Phi(F)}\right)$ is a left R-module.
(ii) Show that this defines a functor $\Phi: \operatorname{Fun}\left(I\right.$, Vect $\left._{K}\right) \longrightarrow \operatorname{Mod} R^{\text {op }}$ (Recall that $\operatorname{Mod} R^{\mathrm{op}}$ can be identified with the category of left R-modules).
(iii) Show that Φ is an equivalence of categories.
9. Consider two exact sequences in an abelian category \mathcal{A} as follows:

$$
0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0 \quad 0 \rightarrow D \xrightarrow{h} E \xrightarrow{k} F \rightarrow 0
$$

Show that the following is an exact sequence

$$
0 \rightarrow A \oplus D \xrightarrow{f \oplus h} B \oplus E \xrightarrow{g \oplus k} C \oplus F \rightarrow 0
$$

10. Prove the snake lemma in $\operatorname{Mod} R$ using diagram chasing methods (i.e., using elements).
