MA3204 - Exercise 6

1. Let \mathcal{A} be an additive category. Let $f^{\bullet}: A^{\bullet} \rightarrow B^{\bullet}$ be a morphism of complexes in $\mathbf{C}(\mathcal{A})$. Show that $\operatorname{Cone}\left((-1)^{n} f^{\bullet}[n]\right)=\operatorname{Cone}\left(f^{\bullet}\right)[n]$.
2. Let \mathcal{C} be a category. Show that a morphism in \mathcal{C} is an isomorphism if and only it is both a split monomorphism and a split epimorphism.
3. Let $(\mathcal{T}, \Sigma, \Delta)$ be a triangulated category. Let $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$ be a distinguished triangle. Show that the triangles

$$
\begin{aligned}
& X \xrightarrow{-f} Y \xrightarrow{-g} Z \xrightarrow{h} X[1] \\
& X \xrightarrow{-f} Y \xrightarrow{g} Z \xrightarrow{-h} X[1] \\
& X \xrightarrow{f} Y \xrightarrow{-g} Z \xrightarrow{-h} X[1]
\end{aligned}
$$

are also distinguished.
4. Let $(\mathcal{T}, \Sigma, \Delta)$ be a triangulated category.
(a) [Opp16, Exercise VI.1] Let $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X$ [1] be a distinguished triangle. If $h=0$, show that f is a split monomorphism and g is a split epimorphism.
Hint: apply (TR3) to a diagram with morphisms between the given triangle and the trivial triangle of X.
(b) Show that any monomorphism in \mathcal{T} is a split monomorphism and any epimorphism in \mathcal{T} is a split epimorphism. Conclude that a morphism in \mathcal{T} is an isomorphism if and only if it is both a monomorphism and an epimorphism.
Hint: use part (a).
5. Let $(\mathcal{T}, \Sigma, \Delta)$ be a triangulated category. Let $(0, \alpha, 0)$ and $(0, \beta, 0)$ be two endomorphisms of a distinguished triangle $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$. Show that $\alpha \circ \beta=0$.
Hint: apply (TR3) to a diagram with morphisms between the given triangle and a rotation of the trivial triangle of Y.
6. Let \mathcal{A} be an additive category. The aim of this exercise is to fill-in the details in the proof that $(\mathbf{K}(\mathcal{A}),[1], \Delta)$ satisfies (TR3). Assume that we have a diagram

in $\mathbf{K}(\mathcal{A})$ such that $f^{\prime \bullet} \circ \alpha^{\bullet}=\beta^{\bullet} \circ f^{\bullet}$. That is, there exist morphisms $h^{n}: A^{n} \rightarrow B^{\prime n-1}$ in \mathcal{A} satisfying

$$
\beta^{n} \circ f^{n}-f^{\prime n} \circ \alpha^{n}=d_{B^{\prime}}^{n-1} \circ h^{n}+h^{n+1} \circ d_{A}^{n}
$$

for all $n \in \mathbb{Z}$. Define $\gamma^{\bullet}: \operatorname{Cone}\left(f^{\bullet}\right) \rightarrow \operatorname{Cone}\left(f^{\bullet}\right)$ by $\gamma^{n}=\left(\begin{array}{cc}\beta^{n} & h^{n+1} \\ 0 & \alpha^{n+1}\end{array}\right)$.
(a) Show that γ^{\bullet} is a morphism in $\mathbf{K}(\mathcal{A})$.
(b) Show that $\gamma^{\bullet} \circ\binom{1}{0}=\binom{1}{0} \circ \beta^{\bullet}$ in $\mathbf{K}(\mathcal{A})$.
(c) Show that (01) $\circ \gamma^{\bullet}=\alpha^{\bullet}[1] \circ\left(\begin{array}{ll}0 & 1\end{array}\right)$ in $\mathbf{K}(\mathcal{A})$.

Hint: show that the claims (a),(b) and (c) hold in $\mathbf{C}(\mathcal{A})$ even.
7. Let \mathcal{A} be an additive category. The aim of this exercise is to fill-in the details in the proof that $(\mathbf{K}(\mathcal{A}),[1], \Delta)$ satisfies (TR4). Assume that we have the solid part of the diagram

in $\mathbf{K}(\mathcal{A})$ and consider the dashed part.
(a) Check that the maps in the dashed part are well-defined and that all squares commute in $\mathbf{K}(\mathcal{A})$.
(b) Show that

$$
\operatorname{Cone}\left(f^{\bullet}\right) \xrightarrow{\left(\begin{array}{ll}
g^{\bullet} & 0 \\
0 & 1
\end{array}\right)} \operatorname{Cone}\left(g^{\bullet} \circ f^{\bullet}\right) \xrightarrow{\left(\begin{array}{ll}
1 & 0 \\
0 & f^{\bullet}[1]
\end{array}\right)} \operatorname{Cone}\left(g^{\bullet}\right) \xrightarrow{\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)} \operatorname{Cone}\left(f^{\bullet}\right)[1]
$$

is isomorphic to a standard triangle in $\mathbf{K}(\mathcal{A})$.
Hint: show that the diagram

is an isomorphism of triangles in $\mathbf{K}(\mathcal{A})$.
8. Let $(\mathcal{T},[1], \Delta)$ be a triangulated category. Let $[1]^{\mathrm{op}}: \mathcal{T}^{\mathrm{op}} \rightarrow \mathcal{T}^{\mathrm{op}}$ be the functor defined by

- if $X \in \mathcal{T}^{\text {op }}$, then $X[1]^{\text {op }}=X[-1]$, and
- if $f: X \rightarrow Y$ in $\mathcal{T}^{\text {op }}$, so that $f: Y \rightarrow X$ in \mathcal{T} and $f[-1]: Y[-1] \rightarrow X[-1]$ in \mathcal{T}, then $f[1]^{\text {op }}$ is defined as the arrow $f[-1]: X[-1] \rightarrow Y[-1]$ in $\mathcal{T}^{\mathrm{op}}$.

Let Δ^{op} be a class of triangles in \mathcal{T} defined by

$$
\Delta^{\mathrm{op}}=\left\{Z \xrightarrow{g} Y \xrightarrow{f} X \xrightarrow{-h[1]^{\mathrm{op}}} Z[1]^{\mathrm{op}} \mid X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1] \in \Delta\right\} .
$$

Show that ($\left.\mathcal{T}^{\mathrm{op}},[1]^{\mathrm{op}}, \Delta^{\mathrm{op}}\right)$ is a triangulated category.
Hint: to show that (TR4) holds you may want to use Problem 3.

References

[Opp16] Steffen Oppermann. Notes in homological algebra. https://folk.ntnu.no/opperman/HomAlg.pdf, 2016.

