MA3204: HOMOLOGICAL ALGEBRA - EXERCISE SHEET 3

Exercise 1. (The Yoneda embedding reflects exactness) Let \mathscr{A} be an abelian category and $X \xrightarrow{f} Y \xrightarrow{g} Z$ a sequence in \mathscr{A}. Consider the following statements:
(i) The sequence $X \xrightarrow{f} Y \xrightarrow{g} Z$ is exact.
(ii) For any object A in \mathscr{A}, the sequence

$$
\operatorname{Hom}_{\mathscr{A}}(A, X) \xrightarrow{f_{*}} \operatorname{Hom}_{\mathscr{A}}(A, Y) \xrightarrow{g_{*}} \operatorname{Hom}_{\mathscr{A}}(A, Z)
$$

is exact.
(iii) For any object A in \mathscr{A}, the sequence

$$
\operatorname{Hom}_{\mathscr{A}}(Z, A) \xrightarrow{g^{*}} \operatorname{Hom}_{\mathscr{A}}(Y, A) \xrightarrow{f^{*}} \operatorname{Hom}_{\mathscr{A}}(X, A)
$$

is exact.
Show that $($ ii $) \Longrightarrow(i)$ and $(i i i) \Longrightarrow(i)$.
Exercise 2. Let (F, G) be an adjoint pair of functors between the abelian categories \mathscr{A} and \mathscr{B}.
(i) Show that F is right exact and G is left exact.
(ii) Assume that the functor G is right exact. Show that the functor F preserves projective objects.
(iii) Assume that the functor F is left exact. Show that the functor G preserves injective objects.

Exercise 3. Let $\phi: R \longrightarrow S$ be a homomorphism of rings. Show that ($\phi^{*}, \phi_{*}, \phi^{!}$) :

is an adjoint triple, i.e. $\left(\phi^{*}, \phi_{*}\right)$ and $\left(\phi_{*}, \phi^{!}\right)$are adjoint pairs, where ϕ_{*} is restriction of scalars, $\phi^{*}(M)=$ $M \otimes_{R} S$ is extension of scalars, and $\phi^{!}(M)=\operatorname{Hom}_{R}(S, M)$.

Exercise 4. Let R be a ring and $e^{2}=e$ and idempotent element of R.
(i) Show that the triple of functors $\left(\operatorname{Re} \otimes_{e R e}-, e(-), \operatorname{Hom}_{e R e}(e R,-)\right)$:

is an adjoint triple, where $e(-)$ is multiplication with the idempotent element e.
(ii) Show that the functor $e R \otimes_{e R e}-:$ Mod-eRe $\longrightarrow \operatorname{Mod}-R$ is fully faithful. Is the functor $\operatorname{Hom}_{e R e}(R e,-)$ fully faithful?
(iii) What is the kernel of the functor $e(-): \operatorname{Mod}-R \longrightarrow$ Mod-eRe?

Exercise 5. Let R be a commutative ring and I, J two ideals in R. Show that $R / I \otimes_{R} R / J \cong R /(I+J)$. Using this, show that $\mathbb{Z}_{n} \otimes_{\mathbb{Z}} \mathbb{Z}_{m} \cong \mathbb{Z}_{d}$ where $d=\operatorname{gcd}(m, n)$.

Exercise 6. Let R and S be two k-algebras where k is a commutative ring. Show that $R \otimes_{k} S$ is a k-algebra with multiplication: $(r \otimes s) \cdot\left(r^{\prime} \otimes s^{\prime}\right)=r r^{\prime} \otimes s s^{\prime}$.

Exercise 7. Show that the k-algebras $k[x, y]$ and $k[x] \otimes_{k} k[y]$ are isomorphic.
Exercise 8. If R is a k-algebra, show that the k-algebras $R \otimes_{k} \mathrm{M}_{n}(k)$ and $\mathrm{M}_{n}(R)$ are isomorphic.

Exercise 9. Let R be a ring, $R_{R} A$ an R-module and $\left(B_{i}\right)_{i \in I}$ a family of left R-modules.
(i) Show that we have the following isomorphisms:

$$
\operatorname{Hom}_{R}\left(A, \prod_{i \in I} B_{i}\right) \cong \prod_{i \in I} \operatorname{Hom}_{R}\left(A, B_{i}\right)
$$

and

$$
\operatorname{Hom}_{R}\left(\coprod_{i \in I} B_{i}, A\right) \cong \prod_{i \in I} \operatorname{Hom}_{R}\left(B_{i}, A\right)
$$

(ii) Provide examples where the following groups are not isomorphic:
(a) $\operatorname{Hom}_{R}\left(A, \coprod_{i \in I} B_{i}\right) \not \not \prod_{i \in I} \operatorname{Hom}_{R}\left(A, B_{i}\right)$.
(b) $\operatorname{Hom}_{R}\left(A, \coprod_{i \in I} B_{i}\right) \not \not \coprod_{i \in I} \operatorname{Hom}_{R}\left(A, B_{i}\right)$.
(c) $\operatorname{Hom}_{R}\left(\prod_{i \in I} B_{i}, A\right) \not \not \prod_{i \in I} \operatorname{Hom}_{R}\left(B_{i}, A\right)$.
(d) $\operatorname{Hom}_{R}\left(\prod_{i \in I} B_{i}, A\right) \not \not \coprod_{i \in I} \operatorname{Hom}_{R}\left(B_{i}, A\right)$.
(iii) Show that if ${ }_{R} A$ is finitely generated, then there is an isomorphism:

$$
\operatorname{Hom}_{R}\left(A, \coprod_{i \in I} B_{i}\right) \cong \coprod_{i \in I} \operatorname{Hom}_{R}\left(A, B_{i}\right)
$$

Exercise 10. Exercises III. 1 - III. 4 from the notes.

Chrysostomos Psaroudakis, Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway

E-mail address: chrysostomos.psaroudakis@math.ntnu.no

