MA3204: HOMOLOGICAL ALGEBRA - EXERCISE SHEET 3

Exercise 1. Let \mathscr{A} be an abelian category and $X \xrightarrow{f} Y \xrightarrow{g} Z$ a sequence in \mathscr{A} . Show that the following statements are equivalent:

- (i) The sequence $X \xrightarrow{f} Y \xrightarrow{g} Z$ is exact.
- (ii) For any object A in \mathscr{A} , the sequence

$$\operatorname{Hom}_{\mathscr{A}}(A,X) \xrightarrow{f_{*}} \operatorname{Hom}_{\mathscr{A}}(A,Y) \xrightarrow{g_{*}} \operatorname{Hom}_{\mathscr{A}}(A,Z)$$

is exact.

(iii) For any object A in \mathscr{A} , the sequence

$$\operatorname{Hom}_{\mathscr{A}}(Z,A) \xrightarrow{g^*} \operatorname{Hom}_{\mathscr{A}}(Y,A) \xrightarrow{f^*} \operatorname{Hom}_{\mathscr{A}}(X,A)$$

is exact.

Exercise 2. Let (F, G) be an adjoint pair of functors between the abelian categories \mathscr{A} and \mathscr{B} .

- (i) Show that F is right exact and G is left exact.
- (ii) Assume that the functor G is right exact. Show that the functor F preserves projective objects.
- (iii) Assume that the functor F is left exact. Show that the functor G preserves injective objects.

Exercise 3. Let $\phi: R \longrightarrow S$ be a homomorphism of rings. Show that $(\phi^*, \phi_*, \phi^!)$:

is an adjoint triple, i.e. (ϕ^*, ϕ_*) and $(\phi_*, \phi^!)$ are adjoint pairs, where ϕ_* is restriction of scalars, $\phi^*(M) = M \otimes_R S$ is extension of scalars, and $\phi^!(M) = \text{Hom}_R(S, M)$.

Exercise 4. Let R be a ring and $e^2 = e$ and idempotent element of R.

(i) Show that the triple of functors $(Re \otimes_{eRe} -, e(-), \operatorname{Hom}_{eRe}(eR, -))$:

is an adjoint triple, where e(-) is multiplication with the idempotent element e.

- (ii) Show that the functor $eR \otimes_{eRe} -$: Mod- $eRe \longrightarrow$ Mod-R is fully faithful. Is the functor Hom_{eRe}(Re, -) fully faithful?</sub>
- (iii) What is the kernel of the functor e(-): Mod- $R \longrightarrow$ Mod-eRe?

Exercise 5. Let R be a commutative ring and I, J two ideals in R. Show that $R/I \otimes_R R/J \cong R/(I+J)$. Using this, show that $\mathbb{Z}_n \otimes_{\mathbb{Z}} \mathbb{Z}_m \cong \mathbb{Z}_d$ where $d = \operatorname{gcd}(m, n)$.

Exercise 6. Let R and S be two k-algebras where k is a commutative ring. Show that $R \otimes_k S$ is a k-algebra with multiplication: $(r \otimes s) \cdot (r' \otimes s') = rr' \otimes ss'$.

Exercise 7. Show that the k-algebras k[x, y] and $k[x] \otimes_k k[y]$ are isomorphic.

Date: October 1, 2016.

Exercise 8. If R is a k-algebra, show that the k-algebras $R \otimes_k M_n(k)$ and $M_n(R)$ are isomorphic.

Exercise 9. Let R be a ring, ${}_{R}A$ an R-module and $(B_i)_{i \in I}$ a family of left R-modules.

(i) Show that we have the following isomorphisms:

$$\operatorname{Hom}_R(A, \prod_{i \in I} B_i) \cong \prod_{i \in I} \operatorname{Hom}_R(A, B_i)$$

and

$$\operatorname{Hom}_R(\coprod_{i\in I}B_i,A)\cong\prod_{i\in I}\operatorname{Hom}_R(B_i,A)$$

- (ii) Provide examples where the following groups are not isomorphic:
 - (a) $\operatorname{Hom}_R(A, \coprod_{i \in I} B_i) \cong \prod_{i \in I} \operatorname{Hom}_R(A, B_i).$
 - (b) $\operatorname{Hom}_R(A, \coprod_{i \in I} B_i) \ncong \coprod_{i \in I} \operatorname{Hom}_R(A, B_i).$
 - (c) $\operatorname{Hom}_R(\prod_{i\in I} B_i, A) \cong \prod_{i\in I} \operatorname{Hom}_R(B_i, A).$
 - (d) $\operatorname{Hom}_R(\prod_{i \in I} B_i, A) \ncong \coprod_{i \in I} \operatorname{Hom}_R(B_i, A).$

(iii) Show that if $_{R}A$ is finitely generated, then there is an isomorphism:

$$\operatorname{Hom}_R(A, \coprod_{i \in I} B_i) \cong \coprod_{i \in I} \operatorname{Hom}_R(A, B_i)$$

Exercise 10. Exercises III.1 – III.4 from the notes.

Chrysostomos Psaroudakis, Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway

E-mail address: chrysostomos.psaroudakis@math.ntnu.no