MA3204: HOMOLOGICAL ALGEBRA - EXERCISE SHEET 2

Exercise 1. Let X be a small category and \mathscr{A} an abelian category. Show that the category of functors $\operatorname{Fun}(X, \mathscr{A})$ is abelian.

Exercise 2. A functor $F: \mathscr{A} \longrightarrow \mathscr{B}$ between abelian categories is additive, if $F\left(f+f^{\prime}\right)=F(f)+F\left(f^{\prime}\right)$ for any morphisms $f, f^{\prime}: X \longrightarrow Y$ in \mathscr{A}. Equivalently, the map $\operatorname{Hom}_{\mathscr{A}}(X, Y) \longrightarrow \operatorname{Hom}_{\mathscr{B}}(F X, F Y)$, $f \mapsto F(f)$, is a group homomorphism. Show that the following are equivalent:
(i) The functor F is additive.
(ii) F preserves finite products.
(iii) F preserves finite coproducts.

Exercise 3. Let R be a ring. Show that there are the following equivalences:
(i) $\operatorname{Mod}-R^{\mathrm{op}} \xrightarrow{\simeq} \operatorname{Fun}(R, \mathscr{A} b)$.
(ii) $\operatorname{Mod}-R \xrightarrow{\simeq} \operatorname{Fun}\left(R^{\mathrm{op}}, \mathscr{A} b\right)$.

Note that in the above two functor categories we consider additive functors.
(Hint: Consider the ring R as a category with one object.)
Exercise 4. Let R be a ring. Consider the full subcategory $\bmod -R$ of $\operatorname{Mod}-R$ consisting of all finitely generated R-modules. Show that:
(i) $\bmod -R$ has cokernels, and
(ii) $\bmod -R$ has kernels if and only if R is right Noetherian.

Exercise 5. (Challenge!) Let R be a ring. Recall that a ring R is called left coherent if every finitely generated left ideal in R is finitely presented. We denote ${ }^{1}$ again by mod- $R^{\text {op }}$ the full subcategory of Mod- R^{op} consisting of the finitely presented left R-modules. Show that:

$$
\bmod -R^{\mathrm{op}} \text { is abelian } \Longleftrightarrow R \text { is left coherent. }
$$

Exercise 6. Let \mathscr{A} be an additive category. A complex over \mathscr{A} is a family $A^{\bullet}=\left(A^{n}, d^{n}\right)_{n \in \mathbb{Z}}$ where A^{n} are objects in \mathscr{A} and $d_{A}^{n}: A^{n} \longrightarrow A^{n+1}$ are morphisms such that $d_{A}^{n} \circ d_{A}^{n-1}=0$ for all $n \in \mathbb{Z}$. A complex is written as follows:

$$
\cdots \xrightarrow{d^{-2}} A^{-1} \xrightarrow{d^{-1}} A^{0} \xrightarrow{d^{0}} A^{1} \xrightarrow{d^{1}} A^{2} \xrightarrow{d^{2}} \cdots
$$

A morphism of complexes $f^{\bullet}: A^{\bullet} \longrightarrow B^{\bullet}$ is a family of morphisms $f^{\bullet}=\left(f^{n}: A^{n} \longrightarrow B^{n}\right)$ such that $d_{B}^{n} \circ f^{n}=f^{n+1} \circ d_{A}^{n}$ for all $n \in \mathbb{Z}$, that is, we have the following commutative diagram:

The complexes over \mathscr{A} together with the morphisms of complexes form a category, which is called the category of complexes over \mathscr{A} and is denoted by $\mathrm{C}(\mathscr{A})$.

Show that $\mathrm{C}(\mathscr{A})$ is an additive category. If \mathscr{A} is an abelian category show that $\mathrm{C}(\mathscr{A})$ is also abelian.
Exercise 7. Exercises II. 1 - II. 9 from the notes.

Chrysostomos Psaroudakis, Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway

E-mail address: chrysostomos.psaroudakis@math.ntnu.no

[^0]
[^0]: Date: September 19, 2016.
 ${ }^{1}$ Over "good" rings, these two types of modules is the same, see Rotman's book.

