MA3204: HOMOLOGICAL ALGEBRA - EXERCISE SHEET 1

Exercise 1. Let \mathscr{C} be a category. Show that \mathscr{C}^{op} is a category, called the opposite category.

Exercise 2. Let \mathscr{C} and \mathscr{D} be two categories. Show that $\mathscr{C} \times \mathscr{D}$ is a category, called the product category.

Exercise 3. Let R be a ring. Show that a morphism $f: X \longrightarrow Y$ in Mod-R is a monomorphism (respectively an epimorphism) if and only if the map f between the underlying sets is injective (respectively surjective). Show that the same characterisation holds for a map $f: G \longrightarrow H$ in the category Grp of groups.

Exercise 4. Show that a morphism in Ring is a monomorphism if and only if it it injective. Show with an example that epimorphisms in Ring need not be surjective.

Exercise 5. Let R be a ring and consider the functor $(-)^* := \text{Hom}_R(-, R)$: Mod- $R \longrightarrow \text{Mod}-R^{\text{op}}$. Show that the evaluation map

ev: $\mathrm{Id}_{\mathsf{Mod}-R} \longrightarrow (-)^{**}, \ M \mapsto \mathsf{Hom}_R(\mathsf{Hom}_R(M, R), R)$

is a natural transformation. Assume that $R = \mathbb{K}$ is a field. Prove that the evaluation map

$$\operatorname{ev} \colon \operatorname{Id}_{\operatorname{mod} - R} \longrightarrow (-)^{**}$$

is a natural isomorphism, where mod -R is now the category of finite dimensional K-vector spaces. In this case, observe that the categories mod -R and mod - R^{op} are equivalent.

Exercise 6. Let \mathcal{X} be a small category (i.e. Ob \mathcal{X} form a set) and \mathscr{C} a category. We denote by $\mathsf{Fun}(\mathcal{X}, \mathscr{C})$ the collection of all functors from \mathcal{X} to \mathscr{C} (objects) and natural transformations between them (morphisms). Show that $\mathsf{Fun}(\mathcal{X}, \mathscr{C})$ is a category, called the functor category.

Exercise 7. Let R be a ring and consider the group U(R) of invertible elements of R. Show that

$$U: \operatorname{Ring} \longrightarrow \operatorname{Grp}, \ R \mapsto \mathsf{U}(R)$$

is a functor.

Exercise 8. Let \mathbb{K} be a field. Denote by $\mathsf{Mat}_{\mathbb{K}}$ the category with objects the natural numbers and $\mathsf{Hom}_{\mathsf{Mat}_{\mathbb{K}}}(m,n)$ being $m \times n$ matrices over \mathbb{K} . Show that the categories $\mathsf{Mat}_{\mathbb{K}}$ and mod - \mathbb{K} are equivalent.

Exercise 9. Let R be a ring and consider the ring $M_n(R)$ of $n \times n$ matrices with entries in R. Show that the categories of modules Mod-R and Mod- $M_n(R)$ are equivalent.

Exercise 10. Assume that F and F' are left adjoints of a functor $G: \mathscr{D} \longrightarrow \mathscr{C}$. Show that F and F' are naturally isomorphic.

Exercise 11. Let (F, G) be an adjoint pair between the categories \mathscr{C} and \mathscr{D} .

- (i) Show that the functor $G: \mathscr{D} \longrightarrow \mathscr{C}$ is faithful if and only if the counit $\varepsilon_D: FG(D) \longrightarrow D$ is an epimorphism.
- (ii) Show that the functor $G: \mathscr{D} \longrightarrow \mathscr{C}$ is full if and only if the counit $\varepsilon_D: FG(D) \longrightarrow D$ is a split monomorphism.
- (iii) Show that G is fully faithful if and only if the counit ε_D is an isomorphism for all D in \mathscr{D} .
- (iv) What you get if the functor $F: \mathscr{C} \longrightarrow \mathscr{D}$ is fully faithful?

Date: September 2, 2016.

Exercise 12. Consider the forgetful functor $f: Ab \longrightarrow Grp$. Show that the assignment $G \mapsto G/[G, G]$ induces a functor abel: $Grp \longrightarrow Ab$, called the abelianization functor, which is a left adjoint of f, that is, (abel, f) is an adjoint pair. Does the functor f has a right adjoint? Note that [G, G] denotes the commutator subgroup of the group G.

Exercise 13. Let R be a ring and X a set. Consider the following:

 $R^{(X)} = \{ \text{functions } f \colon X \longrightarrow R \mid f(x) \neq 0 \text{ for only finitely many } x \in X \}$

Show that:

- (i) $R^{(-)}$: Set \longrightarrow Mod-R is a functor.
- (ii) There is an adjoint pair $(R^{(-)}, f)$, where $f: \operatorname{Mod} R \longrightarrow \operatorname{Set}$ is the forgetful functor.

Exercise 14. Show that in the category **Set** of sets, the product is the cartesian product and the coproduct is the disjoint union.

Exercise 15. Let \mathscr{C} be a category.

(i) Show that the pullback of a diagram in ${\mathscr C}$

$$\begin{array}{c} & Y \\ & \downarrow^{g} \\ X \xrightarrow{f} Z \end{array}$$

- is unique up to isomorphism. Prove the same for pushout diagrams in \mathscr{C} .
- (ii) If $\mathscr{C} = \mathsf{Set}$, show that the set $W = \{(x, y) \in X \times Y \mid f(x) = g(y)\}$ is the pullback of the above diagram.
- (iii) What is the pushout in the category Set of sets?

Exercise 16. Exercises I.1 – I.14 from the notes.

Chrysostomos Psaroudakis, Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway

E-mail address: chrysostomos.psaroudakis@math.ntnu.no