MA3203 - Exercise sheet 9

Throughout k denotes a field.

1. Show that $\operatorname{rad} k[x] = 0$.

Hint: Let $\lambda \in k[x]$ be a nonzero element. Show that $1 - \lambda x$ is not invertible in k[x]. Conclude using Proposition 16 from the lecture.

- 2. [2, Exercise 8.2] Let Γ be a finite and acyclic quiver and let $\Lambda = k\Gamma$. The aim of this exercise is to show that rad $\Lambda = R_{\Gamma}$ where R_{Γ} is the ideal generated by the set of arrows of Γ .
 - (a) Let $\alpha \in \Gamma_1$, i.e. α is an arrow in Γ . Show that $\alpha \in \operatorname{rad} \Lambda$. *Hint: Show that* $(y\alpha)^2 = 0$ for any $y \in \Lambda$. Use this to show that $1 - y\alpha$ is left invertible for any $y \in \Lambda$. Deduce that $R_{\Gamma} \subseteq \operatorname{rad} k\Gamma$.
 - (b) Show that Λ/R_Γ is a semisimple Λ-module. Hint: Show that the quotient is isomorphic to a product of onedimensional Λ-modules, where the product is taken over the vertices of Γ.
 - (c) Use the equality $\operatorname{rad} \Lambda = \bigcap_{S \text{ simple}} \operatorname{Ann}_{\Lambda} S$ and part (b) to deduce that $\operatorname{rad} k\Gamma \subseteq R_{\Gamma}$.
 - (d) Combining (a) and (c) we get that $\operatorname{rad} k\Gamma = R_{\Gamma}$.
- 3. Is it true that rad $k\Gamma = R_{\Gamma}$ for any finite quiver Γ ? Hint: Use Exercise 1.
- 4. [1, Lemma 1.3] Let Λ be a ring. In this exercise we give some more equivalent characterizations of rad Λ .

- (a) Show that λ ∈ rad Λ if and only if for any x ∈ Λ the element 1 xλ has a two-sided inverse, i.e. an element y ∈ Λ such that y(1 xλ) = 1 = (1 xλ)y.
 Hint: we know that there exists an element y ∈ Λ such that y(1 xλ) = 1. Show that y = 1 + yxλ and deduce that y has a left inverse z. Then show that z = 1 xλ.
- (b) Show that $\lambda \in \operatorname{rad} \Lambda$ if and only if $1 \lambda x$ has a two-sided inverse for any $x \in \Lambda$.

Hint: Show that the following hold for elements in Λ

- If (1 cd)x = 1, then (1 dc)(1 + dxc) = 1.
- If y(1-cd) = 1, then (1 + dyc)(1 dc) = 1.
- 5. [1, Lemma 1.3] Let Λ be a ring. Recall that the *opposite ring* of Λ , denoted Λ^{op} , is defined to be the ring with the same underlying set and group structure as Λ , but where the multiplication in Λ^{op} is defined by the formula a * b = ba.
 - (a) Show that a subset of Λ is a right ideal of Λ if and only if it is a left ideal in Λ^{op} . Deduce that rad Λ^{op} is equal to the intersection of all maximal right ideals in Λ .
 - (b) Show that the following are equivalent for $\lambda \in \Lambda$:
 - i. $\lambda \in \operatorname{rad} \Lambda^{\operatorname{op}}$
 - ii. For any $x \in \Lambda$ the element $1 \lambda x$ has a right inverse
 - iii. For any $x \in \Lambda$ the element $1 \lambda x$ has a two-sided inverse

Hint: Use Exercise 4(a)*.*

- (c) Using part (b) of the Exercise 3, show that $\operatorname{rad} \Lambda^{\operatorname{op}} = \operatorname{rad} \Lambda$.
- 6. Let $f : \Lambda \to \Lambda'$ be a morphism between k-algebras, and assume all simple left Λ' -modules have dimension 1 over k. Show that $f(\operatorname{rad} \Lambda) \subseteq \operatorname{rad} \Lambda'$.

Hint: Show that a simple Λ' -module must be a simple Λ -module, where the module structure is inherited from the map f. Show that if $\lambda \in \Lambda$ annihilates all simple Λ -modules, then $f(\lambda)$ annihilates all simple Λ' modules. Conclude using Proposition 16 from the lecture.

References

- I. Assem, D. Simson, and A. Skowroński, Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory, London Math. Soc. Stud. Texts 65, Cambridge Univ. Press (2006).
- [2] E. Hanson, 2021 MA3203 Problem Sheets, NTNU, https://wiki.math.ntnu.no/ma3203/2021v/ course_schedule.