MA3203 - Exercise sheet 9

Throughout k denotes a field.

1. Show that $\operatorname{rad} k[x]=0$.

Hint: Let $\lambda \in k[x]$ be a nonzero element. Show that $1-\lambda x$ is not invertible in $k[x]$. Conclude using Proposition 16 from the lecture.
2. [2, Exercise 8.2] Let Γ be a finite and acyclic quiver and let $\Lambda=k \Gamma$. The aim of this exercise is to show that $\operatorname{rad} \Lambda=R_{\Gamma}$ where R_{Γ} is the ideal generated by the set of arrows of Γ.
(a) Let $\alpha \in \Gamma_{1}$, i.e. α is an arrow in Γ. Show that $\alpha \in \operatorname{rad} \Lambda$.

Hint: Show that $(y \alpha)^{2}=0$ for any $y \in \Lambda$. Use this to show that $1-y \alpha$ is left invertible for any $y \in \Lambda$. Deduce that $R_{\Gamma} \subseteq \operatorname{rad} k \Gamma$.
(b) Show that Λ / R_{Γ} is a semisimple Λ-module.

Hint: Show that the quotient is isomorphic to a product of onedimensional Λ-modules, where the product is taken over the vertices of Γ.
(c) Use the equality $\operatorname{rad} \Lambda=\bigcap_{S \text { simple }} \operatorname{Ann}_{\Lambda} S$ and part (b) to deduce that $\operatorname{rad} k \Gamma \subseteq R_{\Gamma}$.
(d) Combining (a) and (c) we get that $\operatorname{rad} k \Gamma=R_{\Gamma}$.
3. Is it true that $\operatorname{rad} k \Gamma=R_{\Gamma}$ for any finite quiver Γ ?

Hint: Use Exercise 1.
4. [1, Lemma 1.3] Let Λ be a ring. In this exercise we give some more equivalent characterizations of $\operatorname{rad} \Lambda$.
(a) Show that $\lambda \in \operatorname{rad} \Lambda$ if and only if for any $x \in \Lambda$ the element $1-x \lambda$ has a two-sided inverse, i.e. an element $y \in \Lambda$ such that $y(1-x \lambda)=1=(1-x \lambda) y$.
Hint: we know that there exists an element $y \in \Lambda$ such that $y(1-$ $x \lambda)=1$. Show that $y=1+y x \lambda$ and deduce that y has a left inverse z. Then show that $z=1-x \lambda$.
(b) Show that $\lambda \in \operatorname{rad} \Lambda$ if and only if $1-\lambda x$ has a two-sided inverse for any $x \in \Lambda$.
Hint: Show that the following hold for elements in Λ

- If $(1-c d) x=1$, then $(1-d c)(1+d x c)=1$.
- If $y(1-c d)=1$, then $(1+d y c)(1-d c)=1$.

5. 11, Lemma 1.3] Let Λ be a ring. Recall that the opposite ring of Λ, denoted Λ^{op}, is defined to be the ring with the same underlying set and group structure as Λ, but where the multiplication in Λ^{op} is defined by the formula $a * b=b a$.
(a) Show that a subset of Λ is a right ideal of Λ if and only if it is a left ideal in Λ^{op}. Deduce that $\operatorname{rad} \Lambda^{\mathrm{op}}$ is equal to the intersection of all maximal right ideals in Λ.
(b) Show that the following are equivalent for $\lambda \in \Lambda$:
i. $\lambda \in \operatorname{rad} \Lambda^{\mathrm{op}}$
ii. For any $x \in \Lambda$ the element $1-\lambda x$ has a right inverse
iii. For any $x \in \Lambda$ the element $1-\lambda x$ has a two-sided inverse

Hint: Use Exercise 4 (a).
(c) Using part (b) of the Exercise 3, show that $\operatorname{rad} \Lambda^{\mathrm{op}}=\operatorname{rad} \Lambda$.
6. Let $f: \Lambda \rightarrow \Lambda^{\prime}$ be a morphism between k-algebras, and assume all simple left Λ^{\prime}-modules have dimension 1 over k. Show that $f(\operatorname{rad} \Lambda) \subseteq$ $\operatorname{rad} \Lambda^{\prime}$.

Hint: Show that a simple Λ^{\prime}-module must be a simple Λ-module, where the module structure is inherited from the map f. Show that if $\lambda \in \Lambda$ annihilates all simple Λ-modules, then $f(\lambda)$ annihilates all simple Λ^{\prime} modules. Conclude using Proposition 16 from the lecture.

References

[1] I. Assem, D. Simson, and A. Skowroński, Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory, London Math. Soc. Stud. Texts 65, Cambridge Univ. Press (2006)
[2] E. Hanson, 2021 MA3203 Problem Sheets, NTNU, https://wiki.math.ntnu.no/ma3203/2021v/ course_schedule

