MA3203 - Exercise sheet 6

Throughout k denotes a field

1. [1, Exercise I.13](Challenge) Let $A=M_{n}(k)$ be the ring of $n \times n$ matrices over k, and let M be an indecomposable A-module. Show that $l(M)=1$ and $\operatorname{dim}_{k} M=n$.
Hint: Show that A is a semisimple ring. This can be done using Wedderburn-Artin or in the following way: First show that

$$
A \cong \bigoplus_{i=1}^{n} S_{i}
$$

as a left A-module, where S_{i} is the ith column vector of A. Then show that S_{i} is a simple A-modules for all i (note that S_{i} and S_{j} are isomorphic for all i and j). This shows the claim.
Conclude that any indecomposable A-module is simple and has to be isomorphic to one of the S_{i} 's. Since $l\left(S_{i}\right)=1$ and S_{i} has dimension n, this proves the claim.
2. Let Γ be an arbitrary quiver. Recall that a two-sided ideal $I \subseteq k \Gamma$ is called admissible if there exists an integer $m \geq 2$ so that $R_{\Gamma}^{m} \subseteq I \subseteq R_{\Gamma}^{2}$, where R_{Γ} is the arrow ideal of $k \Gamma$. We fix an admissible ideal I of $k \Gamma$.
(a) (Challenge) Let M be a $k \Gamma / I$-module. Show that M is simple if and only if $\operatorname{dim}_{k} M=1$.
Hint: Choose a path p of maximal length such that $p \cdot m \neq 0$ for some element $m \in M$ (why does such a path exist?). Choose a vertex $i \in Q_{0}$ such that $e_{i} \cdot m \neq 0$ (why does such a vertex exist?). Set $m_{i}:=e_{i} \cdot m$ and show that the one-dimensional subspace

$$
\left\{a \cdot m_{i} \mid a \in k\right\}
$$

of M must be a Λ-submodule. Conclude that it must be equal to M, so M has dimension 1 .
(b) Deduce that for any finite-dimensional $k \Gamma / I$-module M we have $l(M)=\operatorname{dim}_{k} M$.
(c) Let $\Gamma=1 \underset{\beta}{\stackrel{\alpha}{\rightleftarrows}} 2$. Construct a simple $k \Gamma$-module of dimension greater than 1.
Show that the representation $k \underset{1}{\stackrel{1}{\rightleftarrows}} k$ is simple.

Extra problems

3 [1, Exercise III.6] Let $\Gamma=1 \underset{\beta}{\stackrel{\alpha}{\rightrightarrows}} 2$ be the Kronecker quiver. Define a representation $M^{(n)}$ of Γ by

$$
M^{(n)}=k[x] / x^{n} \underset{x}{\stackrel{1}{\rightrightarrows}} k[x] / x^{n} .
$$

Show that $M^{(n)}$ is indecomposable.
This shows that $k \Gamma$ is not of finite representation type even when k is a finite field (compare with Problem 1 in Exercise sheet 3).
Hint: use that $M^{(n)}$ is indecomposable if and only if 0 and 1 are the only idempotent endomorphism of $M^{(n)}$, see Problem 4 in Exercise Sheet 3..

4 [2, Problem 5.2] Let Γ be the quiver $1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$. Consider the representations of Γ

$$
M: k^{2} \xrightarrow{\left[\begin{array}{ll}
1 & 1
\end{array}\right]} k \xrightarrow{\left[\begin{array}{l}
0 \\
1
\end{array}\right]} k^{2}, \quad N: k \xrightarrow{\left[\begin{array}{l}
1 \\
0
\end{array}\right]} k^{2} \xrightarrow{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} k^{2}
$$

(a) Find a composition series for each of M and N.
(b) What do you notice about the number of times each composition factor appears?
(c) (Challenge) How many different composition series does each of M and N have.
Hint: start by looking for subrepresentations of one smaller dimension.

5 [2, Problem 7.2] Let A_{∞} be the "quiver" with vertex set $\left(A_{\infty}\right)_{0}=\mathbb{Z}$ and an arrow $\alpha_{i}: i \rightarrow i+1$ for each $i \in \mathbb{Z}$. Define a representation (V, f) so that $V(i)=k$ and $f_{\alpha_{i}}=1_{k}$ for all i.
(a) What are the subrepresentations of (V, f) ?

Hint: The subrepresentations should be representations (W, g) where $W(i)=k \Longrightarrow W(j)=k$ for all $i \leq j$
(b) Show that (V, f) does not have finite length.

References

[1] I. Assem, D. Simson, and A. Skowroński, Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory, London Math. Soc. Stud. Texts 65, Cambridge Univ. Press (2006).
[2] E. Hanson, 2021 MA3203 Problem Sheets, NTNU, https://wiki.math.ntnu.no/ma3203/2021v/ course_schedule

