MA3203 - Exercise sheet 5

Throughout k denotes a field.

1. [2, Problem 5.1] Find a composition series for the module Λe_{1}, where Λ is the path algebra of each of the following quivers (with relations):
(a) $\Lambda=k \Gamma$ for $\Gamma=1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$.
(b) $\Lambda=k \Gamma$ for $\Gamma=1 \xrightarrow{\alpha} 2 \underset{\gamma}{\stackrel{\beta}{\rightrightarrows}} 3$.
(c) $\Lambda=k \Gamma /(\beta \alpha)$ for $\Gamma=1 \xrightarrow{\alpha} 2 \underset{\gamma}{\stackrel{\beta}{\Longrightarrow}} 3$.
(d) $\Lambda=k \Gamma /\left(\beta \alpha, \delta^{3}\right)$ for $\Gamma=1 \xrightarrow{\alpha} 2 \underset{\gamma}{\stackrel{\beta}{\rightrightarrows}} 3 \underset{\sim}{\square}$.
2. [1, Exercise I.5)] Let Λ be a ring, and let

$$
0 \rightarrow L \xrightarrow{u} M \xrightarrow{r} N \rightarrow 0
$$

be a short exact sequence of Λ-modules. Prove that u admits a retraction (a morphism $v: M \rightarrow L$ such that $v \circ u=1_{L}$) if and only if r admits a section (a morphism $s: N \rightarrow M$ such that $r \circ s=1_{N}$).
Hint: If v is a retraction of u, consider the morphism

$$
t:=1_{M}-u \circ v: M \rightarrow M
$$

Show that t is 0 on L, and hence induces a morphism $s: N \rightarrow M$. Finally, show that $r \circ s=1_{N}$. The other direction is proved similarly.
3. Here we consider modules of finite and infinite length.
(a) Let Λ be a k-algebra. Show that if M is a Λ-module which has finite dimension as a k-vector space, then M has finite length.
(b) Let $k[x]$ be the polynomial algebra in one variable. Show that $k[x]$ does not have finite length as a module over itself.
(c) Given an example of a field k and an infinite-dimensional k-algebra which has finite length as a module over itself.
Hint: Let $k:=\mathbb{Q}$ and consider \mathbb{R} as a \mathbb{Q}-algebra.

References

[1] I. Assem, D. Simson, and A. Skowroński, Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory, London Math. Soc. Stud. Texts 65, Cambridge Univ. Press (2006).
[2] E. Hanson, 2021 MA3203 Problem Sheets, NTNU, https://wiki.math.ntnu.no/ma3203/2021v/ course_schedule

