MA3203 - Exercise sheet 13

Throughout k denotes a field

- 1. [2, Exercise 12.1] Let $\Gamma = 1 \implies 2$. For $\lambda \in k$ define a representation $M(\lambda) = k \stackrel{1}{\Longrightarrow} k$ and define $M(\infty) = k \stackrel{0}{\longrightarrow} k$. For all $\lambda \in k \cup \{\infty\}$, show that there is a projective cover $\Lambda e_1 \stackrel{f_{\lambda}}{\longrightarrow} M(\lambda)$ and find ker (f_{λ}) .
- 2. Let Λ be a ring, and let *e* be an idempotent of Λ .
 - (a) Let M be a Λ -module. Show that we have an isomorphism

$$\operatorname{Hom}_{\Lambda}(\Lambda e, M) \cong eM$$

of abelian groups. *Hint: Show that the map*

$$\operatorname{Hom}_{\Lambda}(\Lambda e, M) \to eM \quad f \mapsto f(e)$$

is well defined, Λ -linear, and bijective.

(b) Show that $e\Lambda e$ inherits a ring structure from Λ with identity element e. Furthermore, show that with this structure

$$\operatorname{Hom}_{\Lambda}(\Lambda e, \Lambda e)^{\operatorname{op}} \cong e\Lambda e$$

becomes an isomorphism of rings, where $\operatorname{Hom}_{\Lambda}(\Lambda e, \Lambda e)^{\operatorname{op}}$ denotes the opposite ring of the endomorphism ring $\operatorname{Hom}_{\Lambda}(\Lambda e, \Lambda e)$. Also, show that

$$\operatorname{Hom}_{\Lambda}(\Lambda e, M) \cong eM$$

becomes an isomorphism of left eAe-modules.

Hint: The additive and multiplicative structure of $e\Lambda e$ is inherited from Λ . The isomorphism

$$\operatorname{Hom}_{\Lambda}(\Lambda e, \Lambda e)^{\operatorname{op}} \xrightarrow{\cong} e\Lambda e$$

is given by the map in a) with $M = \Lambda e$. The action of $e\Lambda e$ on $\operatorname{Hom}_{\Lambda}(\Lambda e, M)$ is given by $(x \cdot f)(y) = f(y \cdot x)$, and on eM just by left multiplication.

- (c) [2, Exercise 12.4 (b)] Suppose $\Lambda = k\Gamma/I$ for some quiver Γ and admissible ideal I, and let $i \in \Gamma_0$ be a vertex. Show that $\dim_k \operatorname{Hom}_{\Lambda}(\Lambda e_i, M) = \dim_k M(i)$, where M(i) is the vector space at vertex i when M is considered as a representation. *Hint: Use that* $e_i M \cong M(i)$
- 3. [1, Exercise I.7.7] let $\Lambda = k[t]$. Show that the Λ -module $k[t]/(t^3)$ has no projective cover in Mod Λ

Hint: If $f: P \to k[t]/(t^3)$ is a projective cover, then P has to be a summand of all projective modules Q for which there exists an epimorphism $Q \to k[t]/(t^3)$ (why?). Deduce that $P \cong k[t]$.

Now consider the morphism $g: k[t] \to k[t]$ given by $1 \mapsto 1 + t^3$. Show that $f \circ g$ is an epimorphism, but g itself is not an epimorphism. Conclude that this gives a contradiction.

4. [2, Exercise 12.3] Let Λ be a ring and M a module. A projective resolution of M is a sequence

 $\cdots \xrightarrow{f_2} P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \to 0$

where each P_i is projective, $\ker(f_i) = \operatorname{Im}(f_{i+1})$ for all $i \ge 0$, and f_0 is surjective. Often we use the symbol P_{\bullet} to denote a projective resolution.

If there exists some m so that $P_m \neq 0$ and $P_n = 0$ for all n > m, then we say that the length of the projective resolution is m. The projective dimension of M is then defined to be the minimum possible length of a projective resolution for M.

There is a theorem which says that if P_{\bullet} is a projective resolution of M so that $P_0 \xrightarrow{f_0} M$ is a projective cover and $P_{i+1} \xrightarrow{f_{i+1}} \ker(f_i)$ is a projective cover for all $i \geq 0$, then the projective dimension of M is equal to the length of P_{\bullet} .

- (a) For an arbitrary ring Λ and module M, show that the projective dimension of M is 0 if and only if M is projective.
- (b) Let $\Gamma = 1 \longrightarrow 2$ and let $\Lambda = k\Gamma$. Find the projective dimensions of the modules $\Lambda e_1, \Lambda e_2$, and $S_1 = \Lambda e_1/\Lambda e_2$. Hint: Show that there exists an exact sequence

$$0 \to \Lambda e_2 \to \Lambda e_1 \to S_1 \to 0.$$

(c) Let $\Gamma = 1 \xrightarrow{\alpha}_{\beta} 2$ and let $\Lambda = k\Gamma/(\alpha\beta, \beta\alpha)$. Find the projective dimensions of the simple modules S_1 and S_2 . Hint: Show that there exists exact sequences

$$\cdots \to \Lambda e_1 \to \Lambda e_2 \to \Lambda e_1 \to S_1 \to 0$$

and

$$\cdots \to \Lambda e_2 \to \Lambda e_1 \to \Lambda e_2 \to S_2 \to 0.$$

- (d) Let Λ be a left artinian ring. The *left global dimension* of Λ is the supremum of the projective dimensions of all finitely generated left Λ -modules¹. Show that if Λ is *left hereditary* (that is, every submodule of a finitely generated projective left module is projective) then the global dimension of Λ is at most 1.²
- (e) (Challenge) Let Γ be a finite acyclic quiver. For an arrow $\alpha \in \Gamma_1$ let $s(\alpha)$ and $t(\alpha)$ denote its source and target of α , respectively. Show that a finite-dimensional representation (V, f) of Γ is projective if and only if the map

$$\bigoplus_{\alpha \in \Gamma_1, \ t(\alpha)=i} V_{s(\alpha)} \xrightarrow{(f_{\alpha})} V_i$$

is a monomorphism for all $i \in \Gamma_0$. Deduce that $k\Gamma$ is left hereditary.

 $^{^1\}mathrm{It}$ can be shown that this is the same as the supremum of all $\Lambda\text{-modules}.$

²The converse to this statement is also true.

References

- I. Assem, D. Simson, and A. Skowroński, Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory, London Math. Soc. Stud. Texts 65, Cambridge Univ. Press (2006).
- [2] E. Hanson, 2021 MA3203 Problem Sheets, NTNU, https://wiki.math.ntnu.no/ma3203/2021v/ course_schedule.