MA3203 - Exercise sheet 13

Throughout k denotes a field

1. [2, Exercise 12.1] Let $\Gamma=1 \Longrightarrow 2$. For $\lambda \in k$ define a representation $M(\lambda)=k \underset{\lambda}{\stackrel{1}{\rightrightarrows}} k$ and define $M(\infty)=k \underset{1}{0} k$. For all $\lambda \in k \cup\{\infty\}$, show that there is a projective cover $\Lambda e_{1} \xrightarrow{f_{\lambda}} M(\lambda)$ and find $\operatorname{ker}\left(f_{\lambda}\right)$.
2. Let Λ be a ring, and let e be an idempotent of Λ.
(a) Let M be a Λ-module. Show that we have an isomorphism

$$
\operatorname{Hom}_{\Lambda}(\Lambda e, M) \cong e M
$$

of abelian groups.
Hint: Show that the map

$$
\operatorname{Hom}_{\Lambda}(\Lambda e, M) \rightarrow e M \quad f \mapsto f(e)
$$

is well defined, Λ-linear, and bijective.
(b) Show that $e \Lambda e$ inherits a ring structure from Λ with identity element e. Furthermore, show that with this structure

$$
\operatorname{Hom}_{\Lambda}(\Lambda e, \Lambda e)^{\mathrm{op}} \cong e \Lambda e
$$

becomes an isomorphism of rings, where $\operatorname{Hom}_{\Lambda}(\Lambda e, \Lambda e)^{\mathrm{op}}$ denotes the opposite ring of the endomorphism ring $\operatorname{Hom}_{\Lambda}(\Lambda e, \Lambda e)$. Also, show that

$$
\operatorname{Hom}_{\Lambda}(\Lambda e, M) \cong e M
$$

becomes an isomorphism of left $e \Lambda e$-modules.

Hint: The additive and multiplicative structure of e Λe is inherited from Λ. The isomorphism

$$
\operatorname{Hom}_{\Lambda}(\Lambda e, \Lambda e)^{\mathrm{op}} \xlongequal{\cong} e \Lambda e
$$

is given by the map in a) with $M=\Lambda e$. The action of e Λe on $\operatorname{Hom}_{\Lambda}(\Lambda e, M)$ is given by $(x \cdot f)(y)=f(y \cdot x)$, and on eM just by left multiplication.
(c) [2, Exercise 12.4 (b)] Suppose $\Lambda=k \Gamma / I$ for some quiver Γ and admissible ideal I, and let $i \in \Gamma_{0}$ be a vertex. Show that $\operatorname{dim}_{k} \operatorname{Hom}_{\Lambda}\left(\Lambda e_{i}, M\right)=\operatorname{dim}_{k} M(i)$, where $M(i)$ is the vector space at vertex i when M is considered as a representation.
Hint: Use that $e_{i} M \cong M(i)$
3. [1, Exercise I.7.7] let $\Lambda=k[t]$. Show that the Λ-module $k[t] /\left(t^{3}\right)$ has no projective cover in $\operatorname{Mod} \Lambda$
Hint: If $f: P \rightarrow k[t] /\left(t^{3}\right)$ is a projective cover, then P has to be a summand of all projective modules Q for which there exists an epimorphism $Q \rightarrow k[t] /\left(t^{3}\right)$ (why?). Deduce that $P \cong k[t]$.
Now consider the morphism $g: k[t] \rightarrow k[t]$ given by $1 \mapsto 1+t^{3}$. Show that $f \circ g$ is an epimorphism, but g itself is not an epimorphism. Conclude that this gives a contradiction.
4. [2, Exercise 12.3] Let Λ be a ring and M a module. A projective resolution of M is a sequence

$$
\cdots \xrightarrow{f_{2}} P_{1} \xrightarrow{f_{1}} P_{0} \xrightarrow{f_{0}} M \rightarrow 0
$$

where each P_{i} is projective, $\operatorname{ker}\left(f_{i}\right)=\operatorname{Im}\left(f_{i+1}\right)$ for all $i \geq 0$, and f_{0} is surjective. Often we use the symbol P_{\bullet} to denote a projective resolution.
If there exists some m so that $P_{m} \neq 0$ and $P_{n}=0$ for all $n>m$, then we say that the length of the projective resolution is m. The projective dimension of M is then defined to be the minimum possible length of a projective resolution for M.
There is a theorem which says that if P_{\bullet} is a projective resolution of M so that $P_{0} \xrightarrow{f_{0}} M$ is a projective cover and $P_{i+1} \xrightarrow{f_{i+1}} \operatorname{ker}\left(f_{i}\right)$ is a projective cover for all $i \geq 0$, then the projective dimension of M is equal to the length of P_{\bullet}.
(a) For an arbitrary ring Λ and module M, show that the projective dimension of M is 0 if and only if M is projective.
(b) Let $\Gamma=1 \longrightarrow 2$ and let $\Lambda=k \Gamma$. Find the projective dimensions of the modules $\Lambda e_{1}, \Lambda e_{2}$, and $S_{1}=\Lambda e_{1} / \Lambda e_{2}$.
Hint: Show that there exists an exact sequence

$$
0 \rightarrow \Lambda e_{2} \rightarrow \Lambda e_{1} \rightarrow S_{1} \rightarrow 0
$$

(c) Let $\Gamma=1 \underset{\beta}{\stackrel{\alpha}{\rightleftarrows}} 2$ and let $\Lambda=k \Gamma /(\alpha \beta, \beta \alpha)$. Find the projective dimensions of the simple modules S_{1} and S_{2}.
Hint: Show that there exists exact sequences

$$
\cdots \rightarrow \Lambda e_{1} \rightarrow \Lambda e_{2} \rightarrow \Lambda e_{1} \rightarrow S_{1} \rightarrow 0
$$

and

$$
\cdots \rightarrow \Lambda e_{2} \rightarrow \Lambda e_{1} \rightarrow \Lambda e_{2} \rightarrow S_{2} \rightarrow 0
$$

(d) Let Λ be a left artinian ring. The left global dimension of Λ is the supremum of the projective dimensions of all finitely generated left Λ-modules ${ }^{1}$. Show that if Λ is left hereditary (that is, every submodule of a finitely generated projective left module is projective) then the global dimension of Λ is at most $1 .{ }^{2}$
(e) (Challenge) Let Γ be a finite acyclic quiver. For an arrow $\alpha \in \Gamma_{1}$ let $s(\alpha)$ and $t(\alpha)$ denote its source and target of α, respectively. Show that a finite-dimensional representation (V, f) of Γ is projective if and only if the map

$$
\bigoplus_{\alpha \in \Gamma_{1}, t(\alpha)=i} V_{s(\alpha)} \stackrel{\left(f_{\alpha}\right)}{\longrightarrow} V_{i}
$$

is a monomorphism for all $i \in \Gamma_{0}$. Deduce that $k \Gamma$ is left hereditary.

[^0]
References

[1] I. Assem, D. Simson, and A. Skowroński, Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory, London Math. Soc. Stud. Texts 65, Cambridge Univ. Press (2006)
[2] E. Hanson, 2021 MA3203 Problem Sheets, NTNU, https://wiki.math.ntnu.no/ma3203/2021v/ course_schedule

[^0]: ${ }^{1}$ It can be shown that this is the same as the supremum of all Λ-modules.
 ${ }^{2}$ The converse to this statement is also true.

