MA3203 - Exercise sheet 11

- 1. Let Λ be a ring and let $f:M\to N$ and $g:N\to L$ be essential epimorphisms of Λ -modules. Show that $g\circ f:M\to L$ is an essential epimorphism.
 - Hint: Let $h: K \to M$ be a morphism, and assume $(g \circ f) \circ k$ is an epimorphism. First show that $g \circ k$ is an epimorphism, and then conclude that k must be an epimorphism.
- 2. [1, Exercise III.9ab] Find the radical and the top of each of the following representations of the quiver $1 \xrightarrow{} 2 \xrightarrow{} 3$.
 - (a) $k \xrightarrow{1} k \xrightarrow{0} k$
 - (b) $k \xrightarrow{0} k \xrightarrow{1} k$
 - (c) $k \xrightarrow{1} k \xrightarrow{1} k$
- 3. Let Λ be a left artinian ring, let $f: M \to N$ be an essential epimorphism between finitely generated modules, and let $h: M \to M$ be a morphism such that $f \circ h = f$. Show that h is an isomorphism.
 - Hint: First show that h is an epimorphism. Then use that M has finite length.
- 4. Let Λ be a ring. We say that Λ is *local* if it has a unique maximal left ideal. Show that the following are equivalent
 - (a) Λ is local

- (b) The top of Λ is simple;
- (c) The non-invertible elements of Λ form an ideal;
- (d) Λ has a unique maximal right ideal.

Hint: Use what you know about the radical.

References

[1] M. Auslander, I. Reiten, and S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press (1995).