MA3203 - Exercise sheet 3

1. [1, Exercise III.8] Let $\Gamma=1 \underset{\beta}{\alpha} 2$ be the Kronecker quiver. Define a representation H_{λ} of Γ by

$$
H_{\lambda}=k \underset{\lambda}{\stackrel{1}{\Longrightarrow}} k .
$$

for every $\lambda \in k$. Show that H_{λ} is indecomposable and that $H_{\lambda} \cong H_{\mu}$ if and only if $\lambda=\mu$. This shows that $k \Gamma$ is not of finite representation type when k is infinite.
2. [4, Exercise 2.1] Let $\Gamma=1 \xrightarrow{\alpha} 2 \stackrel{\beta}{\longleftrightarrow} 3$ and let

$$
V=k^{2} \xrightarrow{\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]} k^{2} \stackrel{\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]}{\longleftarrow} k^{2}
$$

. Write V as a direct sum of indecomposable representations of Γ.
3. Let $\Gamma=1 \longrightarrow 2$ and let $V_{1} \rightarrow V_{2}$ be a representation of Γ. Using Problem 2 b) in the previous exercise sheet, show that we can write $V_{1} \rightarrow V_{2}$ as a direct sum

$$
V_{1} \rightarrow V_{2} \cong(k \rightarrow 0)^{m_{1}} \oplus(0 \rightarrow k)^{m_{2}} \oplus(k \xrightarrow{1} k)^{m_{3}}
$$

for unique integers m_{1}, m_{2}, m_{3}. The uniqueness of this decomposition is a special case of the Krull-Remak-Schmidt theorem, which we will learn later in the course.
4. [2, Exercise 3.4] Let Γ be an arbitrary quiver and let V be a representation of Γ. Show that the following are equivalent.
(a) V is indecomposable.
(b) If $\varphi: V \rightarrow V$ is idempotent $\left(\varphi^{2}=\varphi\right)$, then either $\varphi=0$ (that is, $\varphi(i)=0$ for all $i \in \Gamma_{0}$) or φ is an isomorphism ${ }^{11}$.
5. 3, Exercise 2.5] Let Γ be the following quiver (of type D_{4}):

. For $\lambda, \mu \in k$, let $M(\lambda, \mu)$ be the following representation of Γ

(a) Determine when $M(\lambda, \mu)$ and $M\left(\lambda^{\prime}, \mu^{\prime}\right)$ are isomorphic.
(b) Determine for which values of λ and μ that $M(\lambda, \mu)$ is indecomposable.

References

[1] I. Assem, D. Simson, and A. Skowroński, Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory, London Math. Soc. Stud. Texts 65, Cambridge Univ. Press (2006).
[2] E. Hanson, 2021 MA3203 Problem Sheets, NTNU, https://wiki.math.ntnu.no/ma3203/2021v/ course_schedule
[3] Ø. Solberg, 2017 MA3203 Problem Sheets, NTNU, http://wiki.math.ntnu.no/ma3203/2017v/ ovinger
[4] L.-P. Thibault, 2019 MA3203 Problem Sheets, NTNU, http://wiki.math.ntnu.no/ma3203/2019v/ lecture_plan

[^0]
[^0]: ${ }^{1}$ This property is sometimes stated as "End (V) contains no nontrivial idempotents".

