MA3203 - Exercise sheet 2

- 1. [3, Exercise 1.1] Let Γ be the quiver $1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$.
 - (a) Consider the representations of Γ

$$(V,f): k^2 \xrightarrow{\begin{bmatrix} 1 & 1 \end{bmatrix}} k \xrightarrow{\begin{bmatrix} 0 \\ 1 \end{bmatrix}} k^2, \qquad (V',f'): k \xrightarrow{\begin{bmatrix} 1 \\ 0 \end{bmatrix}} k^2 \xrightarrow{\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}} k^2$$

and describe all morphisms $(V, f) \to (V', f')$ and $(V', f') \to (V, f)$.

- (b) Given two representations (W, g) and (W', g') of an arbitrary quiver Q, we say that (W', g') is a subrepresentation of (W, g) if W'(i) is a subspace of W(i) for every vertex $i \in Q_0$ and $g'_{\alpha} = g_{\alpha}|_{W'(i)}$ for every arrow $(\alpha : i \to j) \in Q_1$. Find all subrepresentations of the representation $k \xrightarrow{1} k \xrightarrow{1} k$ of the quiver Γ from part (a).
- (c) (Challenge) Give a definition of a *factor representation* and find all factor representations of the representation $k \xrightarrow{1} k \xrightarrow{1} k$ of the quiver Γ from part (a).
- 2. In this exercise we investigate the connection between representations of quivers and certain matrix problems you might have seen in previous courses in linear algebra.
 - (a) Recall that two $n \times m$ matrices A and B are *equivalent* if there exist an invertible $n \times n$ matrix P and an invertible $m \times m$ matrix Q such that $B = PAQ^{-1}$. Let Γ be the quiver $1 \longrightarrow 2$. Show that A and B are equivalent if and only if the representations

$$k^m \xrightarrow{A \cdot -} k^n$$
 and $k^m \xrightarrow{B \cdot -} k^n$

of Γ are isomorphic.

- (b) Let I_r denote the $r \times r$ identity matrix and let $0_{i,j}$ denote the $i \times j$ matrix with all entries 0. Show that any finite-dimensional representation of $1 \longrightarrow 2$ is isomorphic to a representation of the form $k^m \xrightarrow{A k^n} k^n$ where $A = \begin{pmatrix} I_r & 0_{r,m-r} \\ 0_{n-r,r} & 0_{n-r,m-r} \end{pmatrix}$ for unique integers m, n, r.
- (c) Recall that two $n \times n$ matrices A and B are similar if there exists an invertible $n \times n$ matrix P such that $B = PAP^{-1}$. Let Γ be the quiver $1 \, \square \, \alpha$. Show that A and B are similar if and only if the representations

$$k^n \supset A$$
 and $k^n \supset B$.

of Γ are isomorphic.

- (d) (Based on Section 1.2 in [1].) The two subspace problem is given by the set \mathcal{M} of all pairs of matrices (A, B) with the same number of rows under the equivalence relation $(A, B) \sim (A', B')$ if and only if there exists invertible matrices P, Q, R such that $A' = PAQ^{-1}$ and $B' = PBR^{-1}$. Find a quiver Γ such that equivalence classes of \mathcal{M} are in bijection with isomorphism classes of finite-dimensional representation of Γ .
- 3. [2, Exercise 2.4] Let Γ be an arbitrary quiver and let $\phi \colon (V, f) \to (V', f')$ be a morphism of representations of Γ . We define the *kernel* of ϕ to be the representation ker $(\phi) = (W, g)$ given by

$$W(j) = \ker(\phi_j) \qquad j \in \Gamma_0$$
$$g(\alpha) = f_\alpha|_{\ker(\phi_i)} \qquad (\alpha : i \to j) \in \Gamma_1$$

- (a) Show that $\ker(\phi)$ is well-defined; that is, that $\operatorname{Im}(f_{\alpha}|_{\ker(\phi_i)}) \subseteq \ker(\phi_j)$ for all arrows $\alpha : i \to j$.
- (b) Find the kernel of some of the morphisms you found in problem 1.
- (c) Give a definition of the *image* of a morphism of representations and find the image of some of the morphisms you found in problem 1.

(d) Show that for any morphism of representations $\phi: (V, f) \to (V', f')$ there is a surjective morphism $(V, f) \twoheadrightarrow \text{Im}\phi$ with kernel ker (ϕ) ; that is, that $(V, f)/ \text{ker} \phi \cong \text{Im}\phi$.

References

- [1] M, Barot, Introduction to the representation theory of algebras, Springer, Cham (2015)
- [2] E. Hanson, 2021 MA3203 Problem Sheets, NTNU, https://wiki.math.ntnu.no/ma3203/2021v/ course_schedule.
- Ø. Solberg, 2017 MA3203 Problem Sheets, NTNU, http://wiki.math.ntnu.no/ma3203/2017v/ ovinger.