MA3203 - Exercise sheet 18

Throughout k denotes a field.

- 1. (Exercise 13.2 in the videos. It is the same as problem 8 d) on exercise sheet 15, so you can skip it if you have done that problem). Let $\operatorname{vec}(k)$ be the category of finite-dimensional vector spaces over k. Given a finitedimensional k-vector space V, consider $\varphi_V : V \to DD(V)$ so that for $x \in V$ and $f \in D(V)$, we have $\varphi_V(x)(f) = f(x)$.
 - (a) Show that φ_V is an isomorphism.
 - (b) Show that $\varphi = (\varphi_V)_{V \in \text{vec}(k)}$ gives an isomorphism of functors $\text{Id}_{\text{vec}(k)} \to DD(-).$
- 2. (Exercise 13.3 in the videos) Let $f: V \to W$ be a morphism of finitedimensional k-vector spaces. Let B and B' be bases for V and W, respectively, and let B^* and $(B')^*$ be the dual basis of D(V) and D(W), respectively. Suppose the matrix form of f is $m_B^{B'}(f) =: A$. Show that $D(f): D(W) \to D(V)$ has matrix form $m_{(B')^*}^{B^*} = A^{\top}$, where A^{\top} denotes the transpose of A.
- 3. (Lemma 53 in the videos) Let Λ be a finite-dimensional k-algebra.
 - (a) Let $f: A \to B$ and $g: B \to C$ be morphisms of finitely generated left Λ -modules. Show that the sequence

$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$$

is exact if and only if the sequence

$$0 \to D(C) \xrightarrow{D(g)} D(B) \xrightarrow{D(f)} D(A) \to 0$$

is exact.

- (b) Let S be a finitely generated left Λ -module. Show that S is simple if and only if D(S) is simple (as a module over Λ^{op}).
- (c) Let A be a finitely generated left Λ -module. Show that $\ell(A) = \ell(D(A))$.
- 4. (Challenge) [1, Exercise III.3] Let $(\Gamma, \{\rho\})$ be a quiver with relations so that (ρ) is an admissible ideal of $k\Gamma$. Let Γ^{op} be the opposite quiver of Γ . This quiver has the same vertex set as Γ and for each $i \xrightarrow{\alpha} j$ an arrow of Γ there is an arrow $i \xleftarrow{\alpha^*} j$ of Γ^{op} . Now let $\{\rho^{op}\}$ be so that a linear combination of paths $\sum_i c^i \alpha_1^i \cdots \alpha_{m_i}^i \in \{\rho\}$ if and only if $\sum_i c^i (\alpha_{m_i}^i)^* \cdots (\alpha_1^i)^* \in \{\rho^{op}\}$.

Now consider the equivalences of categories $G : \operatorname{Rep}(\Gamma, \{\rho\}) \to \operatorname{mod} k\Gamma/(\rho)$ and $F : \operatorname{mod} k\Gamma^{op}/(\rho^{op}) \to \operatorname{Rep}(\Gamma^{op}, \{\rho^{op}\})$. This gives a duality

 $F \circ D \circ G : \operatorname{Rep}(\Gamma, \{\rho\}) \to \operatorname{Rep}(\Gamma^{op}, \{\rho^{op}\}).$

- (a) Let (V, f) be a representation of $(\Gamma, \{\rho\})$. Show that $F \circ D \circ G(V, f) = (DV, Df)$, where for each vertex i in Γ^{op} , $DV_i := D(V_i)$ and for each arrow α^* in Γ^{op} , $Df_{\alpha^*} := D(f_{\alpha})$.
- (b) Let $\varphi : (V, f) \to (W, g)$ be a morphism in $\operatorname{Rep}(\Gamma, \{\rho\})$. Describe the morphism $F \circ D \circ G(\varphi)$.

References

I. Assem, D. Simson, and A. Skowroński, *Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory*, London Math. Soc. Stud. Texts 65, Cambridge Univ. Press (2006).