MA3203 - Exercise sheet 18

Throughout k denotes a field.

1. (Exercise 13.2 in the videos. It is the same as problem 8 d) on exercise sheet 15 , so you can skip it if you have done that problem). Let $\operatorname{vec}(k)$ be the category of finite-dimenional vector spaces over k. Given a finitedimensional k-vector space V, consider $\varphi_{V}: V \rightarrow D D(V)$ so that for $x \in V$ and $f \in D(V)$, we have $\varphi_{V}(x)(f)=f(x)$.
(a) Show that φ_{V} is an isomorphism.
(b) Show that $\varphi=\left(\varphi_{V}\right)_{V \in \operatorname{vec}(k)}$ gives an isomorphism of functors $\mathrm{Id}_{\mathrm{vec}(k)} \rightarrow D D(-)$.
2. (Exercise 13.3 in the videos) Let $f: V \rightarrow W$ be a morphism of finitedimensional k-vector spaces. Let B and B^{\prime} be bases for V and W, respectively, and let B^{*} and $\left(B^{\prime}\right)^{*}$ be the dual basis of $D(V)$ and $D(W)$, respectively. Suppose the matrix form of f is $m_{B}^{B^{\prime}}(f)=: A$. Show that $D(f): D(W) \rightarrow D(V)$ has matrix form $m_{\left(B^{\prime}\right)^{*}}^{B^{*}}=A^{\top}$, where A^{\top} denotes the transpose of A.
3. (Lemma 53 in the videos) Let Λ be a finite-dimensional k-algebra.
(a) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be morphisms of finitely generated left Λ-modules. Show that the sequence

$$
0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0
$$

is exact if and only if the sequence

$$
0 \rightarrow D(C) \xrightarrow{D(g)} D(B) \xrightarrow{D(f)} D(A) \rightarrow 0
$$

is exact.
(b) Let S be a finitely generated left Λ-module. Show that S is simple if and only if $D(S)$ is simple (as a module over $\Lambda^{o p}$).
(c) Let A be a finitely generated left Λ-module. Show that $\ell(A)=$ $\ell(D(A))$.
4. (Challenge) [1, Exercise III.3] Let $(\Gamma,\{\rho\})$ be a quiver with relations so that (ρ) is an admissible ideal of $k \Gamma$. Let $\Gamma^{o p}$ be the opposite quiver of Γ. This quiver has the same vertex set as Γ and for each $i \xrightarrow{\alpha} j$ an arrow of Γ there is an arrow $i \stackrel{\alpha^{*}}{\leftarrow} j$ of $\Gamma^{o p}$. Now let $\left\{\rho^{o p}\right\}$ be so that a linear combination of paths $\sum_{i} c^{i} \alpha_{1}^{i} \cdots \alpha_{m_{i}}^{i} \in\{\rho\}$ if and only if $\sum_{i} c^{i}\left(\alpha_{m_{i}}^{i}\right)^{*} \cdots\left(\alpha_{1}^{i}\right)^{*} \in\left\{\rho^{o p}\right\}$.
Now consider the equivalences of categories $G: \operatorname{Rep}(\Gamma,\{\rho\}) \rightarrow \bmod k \Gamma /(\rho)$ and $F: \bmod k \Gamma^{o p} /\left(\rho^{o p}\right) \rightarrow \operatorname{Rep}\left(\Gamma^{o p},\left\{\rho^{o p}\right\}\right)$. This gives a duality

$$
F \circ D \circ G: \operatorname{Rep}(\Gamma,\{\rho\}) \rightarrow \operatorname{Rep}\left(\Gamma^{o p},\left\{\rho^{o p}\right\}\right)
$$

(a) Let (V, f) be a representation of $(\Gamma,\{\rho\})$. Show that $F \circ D \circ$ $G(V, f)=(D V, D f)$, where for each vertex i in $\Gamma^{o p}, D V_{i}:=D\left(V_{i}\right)$ and for each arrow α^{*} in $\Gamma^{o p}, D f_{\alpha^{*}}:=D\left(f_{\alpha}\right)$.
(b) Let $\varphi:(V, f) \rightarrow(W, g)$ be a morphism in $\operatorname{Rep}(\Gamma,\{\rho\})$. Describe the morphism $F \circ D \circ G(\varphi)$.

References

[1] I. Assem, D. Simson, and A. Skowroński, Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory, London Math. Soc. Stud. Texts 65, Cambridge Univ. Press (2006).

