MA3203 - Exercise sheet 17

Throughout k denote a field

1. [2, Problem 4.1 and 4.2] Let Σ be a k-algebra.
(a) Let Λ be a k-algebra and let \mathcal{B} be a basis for Λ. Supposed $\varphi: \Lambda \rightarrow$ Σ is a morphism of k-vector spaces satisfying the following

- $\varphi\left(1_{\Lambda}\right)=1_{\Sigma}$.
- $\varphi\left(b_{1} b_{2}\right)=\varphi\left(b_{1}\right) \varphi\left(b_{2}\right)$ for all $b_{1}, b_{2} \in \mathcal{B}$.

Show that φ is a morphism of k-algebras
(b) Let Γ be a quiver and let $f: \Gamma_{0} \cup \Gamma_{1} \rightarrow \Sigma$ be a function satisfying the following:

- $\sum_{v \in \Gamma_{0}} f(v)=1_{\Sigma}$.
- $q r=0$ (concatenation of paths) implies that $f(q) f(r)=0$ for all $q, r \in \Gamma_{0} \cup \Gamma_{1}$.
- $f(v)=f(v)^{2}$ for all $v \in \Gamma_{0}$.
- $f(e(\alpha)) f(\alpha)=f(\alpha)=f(\alpha) f(s(\alpha))$ for all $\alpha \in \Gamma_{1}$, where $e(\alpha)$ and $s(\alpha)$ denotes the end and start of α, respectively
Then f extends uniquely to a morphism of k-algebras $\tilde{f}: k \Gamma \rightarrow \Sigma$.

2. (Used in the end of the proof of Theorem 50 in the lecture)

Let Λ be a finite-dimensional algebra, and let r be the Jacobson radical of Λ. Let $x_{1}, \cdots x_{n}$ be elements of r , and assume their image $\overline{x_{1}}, \cdots \overline{x_{n}}$ in $\mathrm{r} / \mathrm{r}^{2}$ generate $\mathrm{r} / \mathrm{r}^{2}$ as a Λ / r-module. Show that $x_{1}, \cdots x_{n}$ generate r as a Λ-module
3. [1, Exercise II.16] This exercise shows that the assumption that k is algebraically closed is necessary in order to claim that every basic k algebra is isomorphic to a quiver algebra.
(a) Show that \mathbb{C} is a two-dimensional basic and connected \mathbb{R}-algebra.
(b) Show that there is no quiver Q and admissible ideal I so that $\mathbb{C} \cong \mathbb{R} Q / I$.
4. [1, Exercise II.17] Here we show that the generators of an admissible ideal are not uniquely determined in general:
(a) Let Γ be the quiver

and let $\mathcal{I}_{1}=\langle\beta \alpha+\delta \gamma\rangle$ and $\mathcal{I}_{2}=\langle\beta \alpha-\delta \gamma\rangle$ be two ideals of $k \Gamma$. If chark $\neq 2$, show that \mathcal{I}_{1} and \mathcal{I}_{2} are admissible and distinct, and that there is an k-algebra isomorphism $k \Gamma / \mathcal{I}_{1} \cong k \Gamma / \mathcal{I}_{2}$.
(b) Let Γ be the quiver $1 \underset{\beta}{\alpha} 2 \xrightarrow{\gamma} 3$ and let $\mathcal{I}_{1}=\langle\gamma \alpha-\gamma \beta\rangle$ and $\mathcal{I}_{2}=\langle\gamma \alpha\rangle$ be two ideals of $k \Gamma$. Show that \mathcal{I}_{1} and \mathcal{I}_{2} are admissible and distinct, and that there is an k-algebra isomorphism $k \Gamma / \mathcal{I}_{1} \cong k \Gamma / \mathcal{I}_{2}$ (Here the characteristic of k can be arbitrary).

References

[1] I. Assem, D. Simson, and A. Skowroński, Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory, London Math. Soc. Stud. Texts 65, Cambridge Univ. Press (2006).
[2] Ø. Solberg, 2017 MA3203 Problem Sheets, NTNU, http://wiki.math.ntnu.no/ma3203/2017v/ ovinger

