MA3203 - Exercise sheet 17

Throughout k denote a field

- 1. [2, Problem 4.1 and 4.2] Let Σ be a k-algebra.
 - (a) Let Λ be a k-algebra and let \mathcal{B} be a basis for Λ . Supposed $\varphi \colon \Lambda \to \Sigma$ is a morphism of k-vector spaces satisfying the following
 - $\varphi(1_{\Lambda}) = 1_{\Sigma}.$
 - $\varphi(b_1b_2) = \varphi(b_1)\varphi(b_2)$ for all $b_1, b_2 \in \mathcal{B}$.

Show that φ is a morphism of k-algebras

- (b) Let Γ be a quiver and let $f: \Gamma_0 \cup \Gamma_1 \to \Sigma$ be a function satisfying the following:
 - $\sum_{v \in \Gamma_0} f(v) = 1_{\Sigma}$.
 - qr = 0 (concatenation of paths) implies that f(q)f(r) = 0 for all $q, r \in \Gamma_0 \cup \Gamma_1$.
 - $f(v) = f(v)^2$ for all $v \in \Gamma_0$.
 - $f(e(\alpha))f(\alpha) = f(\alpha) = f(\alpha)f(s(\alpha))$ for all $\alpha \in \Gamma_1$, where $e(\alpha)$ and $s(\alpha)$ denotes the end and start of α , respectively

Then f extends uniquely to a morphism of k-algebras $\tilde{f} \colon k\Gamma \to \Sigma$.

2. (Used in the end of the proof of Theorem 50 in the lecture)

Let Λ be a finite-dimensional algebra, and let \mathbf{r} be the Jacobson radical of Λ . Let x_1, \dots, x_n be elements of \mathbf{r} , and assume their image $\overline{x_1}, \dots, \overline{x_n}$ in \mathbf{r}/\mathbf{r}^2 generate \mathbf{r}/\mathbf{r}^2 as a Λ/\mathbf{r} -module. Show that x_1, \dots, x_n generate \mathbf{r} as a Λ -module

3. [1, Exercise II.16] This exercise shows that the assumption that k is algebraically closed is necessary in order to claim that every basic k-algebra is isomorphic to a quiver algebra.

- (a) Show that \mathbb{C} is a two-dimensional basic and connected \mathbb{R} -algebra.
- (b) Show that there is no quiver Q and admissible ideal I so that $\mathbb{C} \cong \mathbb{R}Q/I$.
- 4. [1, Exercise II.17] Here we show that the generators of an admissible ideal are not uniquely determined in general:
 - (a) Let Γ be the quiver

and let $\mathcal{I}_1 = \langle \beta \alpha + \delta \gamma \rangle$ and $\mathcal{I}_2 = \langle \beta \alpha - \delta \gamma \rangle$ be two ideals of $k\Gamma$. If chark $\neq 2$, show that \mathcal{I}_1 and \mathcal{I}_2 are admissible and distinct, and that there is an k-algebra isomorphism $k\Gamma/\mathcal{I}_1 \cong k\Gamma/\mathcal{I}_2$.

(b) Let Γ be the quiver $1 \xrightarrow[\beta]{} 2 \xrightarrow{\gamma} 3$ and let $\mathcal{I}_1 = \langle \gamma \alpha - \gamma \beta \rangle$ and $\mathcal{I}_2 = \langle \gamma \alpha \rangle$ be two ideals of $k\Gamma$. Show that \mathcal{I}_1 and \mathcal{I}_2 are admissible and distinct, and that there is an k-algebra isomorphism $k\Gamma/\mathcal{I}_1 \cong k\Gamma/\mathcal{I}_2$ (Here the characteristic of k can be arbitrary).

References

- I. Assem, D. Simson, and A. Skowroński, Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory, London Math. Soc. Stud. Texts 65, Cambridge Univ. Press (2006).
- [2] Ø. Solberg, 2017 MA3203 Problem Sheets, NTNU, http://wiki.math.ntnu.no/ma3203/2017v/ ovinger.