MA3203 - Exercise sheet 14

Throughout k denotes a field.

- 1. (Proposition 39 b) and c) from the videos) Let Λ be a ring.
 - (b) Let $e = e_1 + \dots + e_m \in \Lambda$ be a sum of orthogonal idempotents. Show that $\Lambda e \cong \bigoplus_{i=1}^m \Lambda e_i$.
 - (c) Let $e \in \Lambda$ be a nonzero idempotent. Show that Λe is indecomposable if and only if e is primitive.
- 2. [1, Problem 13.3 (d)-(g)] Let Λ be a ring. An idempotent $e \in \Lambda$ is called a *central* if $e\rho = \rho e$ for all $\rho \in \Lambda$.
 - (a) Show that if e is a central idempotent, then 1 e is also a central idempotent.
 - (b) Show that if e is a central idempotent, then $e\Lambda$ and $(1 e)\Lambda$ are both left and right Λ -modules.
 - (c) Show that if e is a central idempotent, then $e\Lambda$ and $(1 e)\Lambda$ are rings and $\Lambda \cong e\Lambda \times (1 e)\Lambda$ (as rings).
 - (d) We say Λ is *connected* if and only if there do not exist nonzero rings Λ' and Λ'' so that $\Lambda \cong \Lambda' \times \Lambda''$. Show that Λ is connected if and only if 0 and 1_{Λ} are its only central idempotents.
- 3. (Radical of mod Λ). Let Λ be a finite-dimensional k-algebra and let M be a finite-dimensional Λ -module. Recall that the endomorphism ring

$$\operatorname{End}_{\Lambda}(M) := \operatorname{Hom}_{\Lambda}(M, M)$$

is a finite-dimensional k-algebra with multiplication given by composition. For each pair of finite-dimensional left $\Lambda\text{-modules}\ M$ and N we define

$$\operatorname{rad}_{\Lambda}(M,N) = \{g \in \operatorname{Hom}_{\Lambda}(M,N) \mid h \circ g \in \operatorname{rad}(\operatorname{End}_{\Lambda}(M)) \forall h \in \operatorname{Hom}_{\Lambda}(N,M)\}$$

where $\operatorname{rad}(\operatorname{End}_{\Lambda}(M))$ denotes the radical of the ring $\operatorname{End}_{\Lambda}(M)$. We call $\operatorname{rad}_{\Lambda}$ the *(Jacobson) radical* of $\operatorname{mod} \Lambda$.

- (a) Show that $\operatorname{rad}_{\Lambda}(M, N)$ is a sub-vector space of $\operatorname{Hom}_{\Lambda}(M, N)$
- (b) Show that $\operatorname{rad}_{\Lambda}(M, M) = \operatorname{rad}(\operatorname{End}_{\Lambda}(M))$.
- (c) Show that $\operatorname{rad}_{\Lambda}(M, N) = \operatorname{Hom}_{\Lambda}(M, N)$ if M and N are indecomposable and $M \not\cong N$.
- (d) Let $f \in \operatorname{Hom}_{\Lambda}(N, L)$ and $g \in \operatorname{rad}_{\Lambda}(M, N)$. Show that $f \circ g \in \operatorname{rad}_{\Lambda}(M, L)$.
- (e) Let $f \in \operatorname{Hom}_{\Lambda}(K, M)$ and $g \in \operatorname{rad}_{\Lambda}(M, N)$. Show that $g \circ f \in \operatorname{rad}_{\Lambda}(K, N)$.
- (f) Show that

$$\operatorname{rad}(M, N_1 \oplus N_2) = \operatorname{rad}(M, N_1) \oplus \operatorname{rad}(M, N_2)$$
$$\operatorname{rad}(M_1 \oplus M_2, N) = \operatorname{rad}(M_1, N) \oplus \operatorname{rad}(M_2, N).$$

4. Let Λ be a finite-dimensional k-algebra and let M and N be finitedimensional Λ -modules. We define $\operatorname{rad}_{\Lambda}^{2}(M, N)$ to be the sub-vector space of $\operatorname{Hom}_{\Lambda}(M, N)$ generated by all elements of the form $g \circ f$ where $f \in \operatorname{rad}_{\Lambda}(M, K)$ and $g \in \operatorname{rad}_{\Lambda}(K, N)$, where K is an arbitrary finitedimensional Λ -module. The quotient

$$\operatorname{Irr}(M, N) = \operatorname{rad}_{\Lambda}(M, N) / \operatorname{rad}_{\Lambda}^{2}(M, N)$$

is called the space of irreducible morphisms. The Auslander–Reiten quiver Γ_{Λ} of Λ is defined as follows

- The vertices of Γ_{Λ} are the isomorphism classes [M] of finitedimensional indecomposable Λ -modules.
- The number of arrows $[M] \to [N]$ is equal to the dimension of $\operatorname{Irr}(M, N)$

One of the main goals in the representation theory of finite-dimensional algebras is to determine the Auslander–Reiten quiver Γ_{Λ} of a finite-dimensional algebra Λ , since it contains a lot of information about the module category of Λ .

- (a) Determine the Auslander–Reiten quiver for the algebra $k\Gamma$ where $\Gamma=(1\xrightarrow{\alpha}2)$
- (b) Determine the Auslander–Reiten quiver for the algebra $k[x]/(x^2)$.
- (c) Let $\Lambda = k\Gamma$ where $\Gamma = (1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3)$. Assume that we know that

$$S_1 = (k \to 0 \to 0) \quad S_2 = (0 \to k \to 0) \quad S_3 = (0 \to 0 \to k)$$
$$\Lambda e_1 = (k \xrightarrow{1}{} k \xrightarrow{1}{} k) \quad \Lambda e_2 = (0 \xrightarrow{0}{} k \xrightarrow{1}{} k)$$
$$I = (k \xrightarrow{1}{} k \xrightarrow{0}{} 0)$$

are the indecomposable Λ -modules, up to isomorphism. Determine the Auslander–Reiten quiver of Λ .

References

 E. Hanson, 2021 MA3203 Problem Sheets, NTNU, https://wiki.math.ntnu.no/ma3203/2021v/ course_schedule.