MA3203 - Exercise sheet 12

- 1. [1, Exercise 4.1] Let $Q = 1 \longrightarrow 2 \longrightarrow 3$. Find the projective cover and the kernel of the projective cover of each of the following representations of Q.
 - (a) $k \xrightarrow{0} k \xrightarrow{0} k$
 - (b) $k \xrightarrow{1} k \xrightarrow{0} k$ (c) $k \xrightarrow{\begin{bmatrix} 1\\0 \end{bmatrix}} k^2 \xrightarrow{\begin{bmatrix} 1&1 \end{bmatrix}} k$
- 2. [1, Exercise 4.2] Let $Q = 1 \longrightarrow 2 \implies 3$. Find the projective cover and the kernel of the projective cover of each of the following representations of Q.

(a)
$$k \xrightarrow{1} k \xrightarrow{0} k^2$$

(b) $k \xrightarrow{\begin{bmatrix} 0\\1 \end{bmatrix}} k^2 \xrightarrow{\begin{bmatrix} 1&0 \\ 1 \end{bmatrix}} k$
(c) $0 \longrightarrow k^2 \xrightarrow{\begin{bmatrix} 1&0 \\ 1&0 \\ 1&0 \end{bmatrix}} k^2$

3. Let Λ be a left artinian ring, and let e be an idempotent in $\Lambda/\operatorname{rad} \Lambda$. Show that there exists an idempotent e' in Λ such that $\pi(e') = e$, where $\pi \colon \Lambda \to \Lambda/\operatorname{rad} \Lambda$ is the projection map. 4. Let Λ be a left artinian ring. A morphism $f: M \to N$ of Λ -modules is called *right minimal* if any morphism $h: M \to M$ satisfying $f \circ h = f$ is an isomorphism.

Let $f: P \to M$ be a surjective morphism of finitely generated Λ -modules, and assume P is projective. Show that f is an essential epimorphism if and only if f is right minimal.

References

 Ø. Solberg, 2017 MA3203 Problem Sheets, NTNU, http://wiki.math.ntnu.no/ma3203/2017v/ ovinger.