MA3203 - Exercise sheet 10

Throughout k denotes a field.

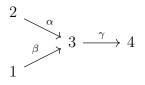
- 1. [1, Proposition 3.7 (a)-(c)] Let Λ be a ring and let L, M, N be Λ -modules. Show that the following hold:
 - (a) An element $m \in M$ belongs to rad M if and only if f(m) = 0 for any $f \in \operatorname{Hom}_{\Lambda}(M, S)$ and any simple Λ -module S.
 - (b) If $g: M \to N$ is a morphism of Λ -modules, then $g(\operatorname{rad} M) \subseteq \operatorname{rad} N$
 - (c) $\operatorname{rad}(M \oplus N) = \operatorname{rad}(M) \oplus \operatorname{rad}(N)$.
- 2. [1, Exercise I.7.6] Let Λ be a ring, let M be a Λ -module, and let N be a Λ -submodule of M. Prove that
 - (a) $(N + \operatorname{rad} M)/N \subseteq \operatorname{rad}(M/N)$.
 - (b) If $N \subseteq \operatorname{rad} M$, then $\operatorname{rad}(M/N) = (\operatorname{rad} M)/N$.
- 3. Find the radical of the module Λe_1 , where Λ is the path algebra of each of the following quivers (with relations):
 - (a) $\Lambda = k\Gamma$ for $\Gamma = 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$.

(b)
$$\Lambda = k\Gamma/(\gamma \alpha - \gamma \beta)$$
 for $\Gamma = 1 \xrightarrow{\alpha \atop \beta} 2 \xrightarrow{\gamma} 3$.

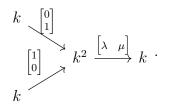
(c)
$$\Lambda = k\Gamma$$
 for $\Gamma = 2 \xrightarrow{\alpha} 1 \xleftarrow{\beta} 3$.

(d)
$$\Lambda = k\Gamma/(\alpha\beta, \beta^2)$$
 for $\Gamma = 2 \leftarrow \alpha - 1 \supset \beta$.

4. Let Γ be the following quiver



and for $\lambda, \mu \in k$ let $M(\lambda, \mu)$ be the representation given by



Compute the radical of M(1, 1) and M(0, 0).

- 5. [2, Exercise 9.2] Let Λ be a ring and let M be a module of finite length $\ell(M)$.
 - (a) Show that $\operatorname{rad}^{\ell(M)} M = 0$.
 - (b) M is called *uniserial* if it has a unique composition series. Let m be the smallest positive integer so that $\operatorname{rad}^m M = 0$ (this is sometimes called the *radical length* of M). Show that M is uniserial if and only if its radical length is equal to its length.
 - (c) Find the radical length of the modules in exercise 3.

References

- I. Assem, D. Simson, and A. Skowroński, *Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory*, London Math. Soc. Stud. Texts 65, Cambridge Univ. Press (2006).
- [2] E. Hanson, 2021 MA3203 Problem Sheets, NTNU, https://wiki.math.ntnu.no/ma3203/2021v/ course_schedule.