
List of some of the main definitions and results
from MA3203

1. Part 1: Quivers and path algebras

• Definition of a quiver (what is a path?)

• Path algebra of a quiver (how do you multiply two elements in
kΓ, and what is the identity element in kΓ).

• Definition of k-algebras. Why is kΓ a k-algebra?

• Proposition 1: kΓ is finite dimensional if and only if Γ has no
oriented cycles

• Proposition 2: If Γ = (Γ0,Γ1) has no oriented cycles, then kΓ is
semisimple if and only if Γ1 = ∅.

• Proposition 3: If J consists of all linear combinations of all non-
trivial paths of kΓ, then J is an ideal of kΓ and kΓ/J ∼= k×· · ·×k
where the product is taken |Γ0| times.

• Γ is a connected quiver if and only if kΓ is a connected k-algebra
(Given as a exercise, not necessary to know the proof).

2. Part 2: Representations of quivers and homomorphisms of such

• Quiver representations + examples (what is the zero representa-
tion, what are the simple representations, what is an indecompos-
able representation, what is a subrepresentation, what is a mor-
phism between representations, what is a kernel of a morphism
between representations, what is a image of a morphism between
representations )

• The correspondence between modules over the path algebra kΓ
and representations of the quiver Γ.
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• Definition of indecomposable modules. Definition of finite repre-
sentation type of an algebra

• Theorem 4: k field of characteristic p and G a finite group such
that p divides |G|. Then the group algebra kG is of finite repre-
sentation type if and only if all Sylow subgroups of G are cyclic.

• Theorem 5: Γ connected quiver without oriented cycles. Then kΓ
is of finite representation type if and only if the underlying graph
of Γ is a Dynkin diagram.

3. Part 3: Quivers with relations, quotients of path algebras and modules
over such

• Definition of a relation in a quiver, definition of quivers with re-
lations. Definition of an admissible relation.

• Correspondence between representations of a quiver Γ with rela-
tions ρ = {σl}l∈I and modules over the algebra kΓ/(ρ).

4. Part 4: Modules of finite length and Jordan-Hölder theorem

• Generalized composition series, composition series, composition
factors, finite length of a module, + examples. mF

S (A) and lF(A)
for a module A, a simple module S, and a composition series F .

• Short exact sequences of modules. Short exact sequences of rep-
resentations.

• Given a short exact sequence 0 → A → B → C → 0, and a gen-
eralized composition series F for B, can get induced generalized
composition series F ′ and F ′′ of A and C (Proposition 7).

• Theorem 9 (Jordan–Hölder): If B is a module of finite length and
F and G are generalized composition series of B, then mF

S (B) =
mG
S(B) and lF(B) = lG(B)

• Proposition 11: If f : A → A is an endomorphism of a module
A of finite length, then f is an isomorphism if and only if it is a
monomorphism if and only if it is an epimorphism.

• Proposition 12: If 0 → A → B → C → 0 is exact and A and C
have finite length, then B has finite length and l(A)+l(C) = l(B).
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• Proposition 13: The subcategory of finite length modules is closed
under extensions, and is the smallest subcategory closed under
extensions and containing the simple modules.

• Proposition 14: A module is of finite length if and only if it is
Noetherian and Artinian

• A ring Λ is left artinian if and only if Λ has finite length as a left
Λ-module

• For a left artinian ring Λ, the modules of finite length coincide
with the finitely generated modules.

5. Part 5: The radical of rings and modules

• Jacobson radical of a ring + examples

• Proposition 16 + Exercise: Λ ring, λ ∈ Λ. The following are
equivalent:

– λ ∈ rad Λ

– 1− xλ is left invertible for all x ∈ Λ

– 1− xλ has a two-sided inverse for all x ∈ Λ

– 1− λx has a two-sided inverse for all x ∈ Λ

– λ · S = (0) for all simple left Λ-modules S

(Not necessary to remember the proof)

• rad Λ = rad Λop.

• Corollary 17: rad Λ =
⋂
S simple left Λ module AnnΛ S. In particular,

rad Λ is a two-sided ideal.

• Theorem 18, Nakayama’s lemma: M finitely generated Λ-module,
I ideal of Λ contained in rad Λ. If I ·M = M , then M = 0.

• Lemma 19: If Λ is left artinian, then rad Λ is a nilpotent ideal.
Furthermore, rad Λ is the largest nilpotent left ideal of Λ.

• Theorem 20: A ring Λ is semisimple if and only if it is left artinian
and rad Λ = 0.

• Theorem 21: Λ left artinian ring. Then

– Λ/ rad Λ is a semisimple ring

– A left module M is semisimple if and only if rad Λ ·M = 0
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– There are only finitely many simple left Λ-modules, and they
occur as direct summands of Λ/ rad Λ.

• Corollary 22: The following are equivalent:

– Λ is left artinian

– Every finitely generated Λ-module has finite length

– rad Λ is nilpotent and rad(Λ)i/ rad(Λ)i+1 is a finitely gener-
ated semimsimple Λ-module for all i ≥ 0.

• Theorem 23: Λ left artinian and I a nilpotent left ideal of Λ. Then
I = rad Λ if and only if Λ/I is semisimple.

• Proposition 24: Let (Γ, ρ) be a quiver with admissible relations.
Then rad(kΓ/(ρ)) = J/ρ = J where J is the ideal in kΓ generated
by the arrows.

• Small submodule, radical of a module.

• Proposition 25: B finitely generated Λ-module, A ⊆ B is small if
and only if A ⊆ radB.

• Theorem 26: Λ left artinian ring, A finitely generated Λ-module.
Then radA = rad Λ · A.

• The radical of a representation + examples

• The top of A, defined as A/ radA for a module A over a left
artinian ring Λ

• Λ left artinian, f : A → B morphism of finitely generated Λ-
modules. Then f is surjective if and only if the induced map
f : A/ radA→ B/ radB is surjective.

• Essential epimorphism, examples, composition of essential epimor-
phisms is an essential epimorphism.

• Proposition 28: Λ left artinan, f : A→ B surjective map of finitely
generated Λ-modules. The following are equivalent:

– f is an essential epimorphism

– Ker f ⊆ radA

– f : A/ radA→ B/ radB is an isomorphism

6. Part 6: Projective modules

• Projective modules, free modules are projective,
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• Proposition 29: A module is projective if and only if it is a direct
summand of a free module.

• e idempotent of Λ, then Λe is a projective left Λ-module

• Projective cover of a module, examples.

• Theorem 30: Λ left artinian ring. Then any finitely generated Λ-
module has a projective cover, which is unique up to isomorphism

• Proposition 31: Λ left artinian, f : P → A surjective morphism of
Λ-modules with P projective. Then f is a projective cover if and
only if f : P/ radP → A/ radA is an isomorphism.

• Proposition 31: Λ left artinian, then the map f : P1 ⊕ P2 ⊕ · · · ⊕
Pn → A1 ⊕ A2 ⊕ · · · ⊕ An defined by

(p1, p2, · · · , pn) 7→ (f1(p1), f2(p2), · · · , fn(pn))

is a projective cover if and only if each fi : Pi → Ai is a projective
cover

• Proposition 32: The following hold for a left artinian ring Λ and
a finitely generated projective module P :

– P → P/ radP is a projective cover

– Q finitely generated projective module, then P ∼= Q if and
only if P/ radP ∼= Q/ radQ.

– P is indecomposable if and only if P/ radP is simple

– P =
⊕n

i=1 Pi
∼=

⊕m
j=1 Qj with Pi, Qj indecomposable, then

m = n and exists permutation π of {1, 2, · · · ,m} such that
Pi ∼= Qπ(i) for all 1 ≤ i ≤ n.

• Corollary 33:Λ left artinian, and let S1, S2, · · · , Sn be the simple
Λ-modules. Let Pi be the projective cover of Si. Then the inde-
composable Λ-modules are up to isomorphism just the modules
P1, · · · , Pn

• Lemma 34: Λ left artinian, f : P → M morphism of finitely gen-

erated Λ-modules. Assume the composite P
f−→M

πm−→M/ radM
is a projective cover. Then f is a projective cover.

• Local rings, examples for finite-dimensional algebras.

• Proposition 35: Λ local, then 0 and 1 are the only idempotents
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• Proposition 37: Λ left artinian, P finitely generated Λ-module.
The following are equivalent:

– P is indecomposable

– EndΛ(P ) is local

– radP is the unique maximal submodule of P

– P/ radP is simple

• Corollary 38: Λ left artinian. The following are equivalent:

– Λ local

– rad Λ unique maximal left ideal

– Λ/ rad Λ is simple

• Proposition 39: Λ left artinian. The following hold:

– the identity 1 ∈ Λ can be written as a sum 1 = e1+e2+· · ·+en
of primitive orthogonal idempotents

– e1, e2, · · · en orthogonal idempotents, and e = e1+e2+· · ·+en,
then Λe = Λe1 ⊕ Λe2 ⊕ · · · ⊕ Λen

– e 6= 0 idempotent. Then e is primitive if and only if Λe is
indecomposable

• Proposition 40: Λ left artinian. Any finitely generated projective
module can be written as a sum of indecomposable projective
modules in a unique way up to isomorphism and permutation of
the summands.

7. Part 7: Krull-Remak-Schmidt theorem

• Lemma 41 (Fitting lemma): Λ ring, M a Λ-module of finite length,
φ : M → M morphism of Λ-modules. Then there exists an n ≥ 1
such that M = Imφn ⊕Kerφn.

• Theorem 42: M finitely generated Λ-module where Λ is a left
artinian ring. Then M is indecomposable if and only if EndΛ(M)
is a local ring.

• Theorem 43 (Krull–Remak–Schmidt theorem): Λ left artinian
ring, M finitely generated Λ-module. Then M can be written
as a sum of indecomposable Λ-modules in a unique way up to
isomorphism and permuation of the summands.
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8. Part 8: Artin algebras

• R-algebras for R a commutative ring

• Definition of an artin R-algebra. Any artin R-algebra is a left
artinian ring (Proposition 44 c))

• Proposition 44 a) and b): Λ artin R-algebra. Then HomΛ(A,B)
is a finitely generated R-module for any finitely generated left Λ-
modules A and B. Also EndΛ(A) is an artin R-algebra for any
finitely generated left Λ-module A.

9. Part 9: Categories and functors

• What is a category, examples of categories, isomorphisms in cat-
egories, subcategories, full subcategories + examples

• Covariant and contravariant functors + examples (Hom-functor)

• preadditive R-category for a commutative ring R. Additive R-
functors + examples

• Morphism of functors (also called natural transformations). Ex-
amples

• Equivalences of (R) categories. A functor is an equivalence if and
only if it is full, faithful and dense (Proposition 45).

• Theorem 46: (Γ, ρ) quiver with admissible relations. Then the
category Rep(Γ, ρ) is equivalent to mod Λ, where Λ = kΓ/(ρ).
Description of this equivalence.

10. Part 10: Projectivization

• Lemma 47: Have isomorphism

HomΛ(A,B1 ⊕B2) ∼= HomΛ(A,B1)⊕ HomΛ(A,B2)

of left EndΛ(A)op-modules. Dually, have isomorphism

HomΛ(A1 ⊕ A2, B) ∼= HomΛ(A1, B)⊕ HomΛ(A2, B)

of left EndΛ(B)-modules
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• Proposition 48: Λ artin R-algebra, A finitely generated Λ-module,
Γ = EndΛ(A)op. Then eA(X) is a projective Γ-module, and

eA : addA→ P(Γ)

is an equivalence of R-categories, where P(Γ) is the subcategory
of mod Γ of finitely generated projective Γ-modules.

• Lemma 49: Same assumptions as in Proposition 48. The following
hold:

(a) X 6= 0 in addA if and only if eA(X) 6= 0 in P(Γ).

(b) X ∈ addA, then X is indecomposable if and only if eA(X) is
indecomposable.

(c) X, Y ∈ addA, then eA(X) ∼= eA(Y ) if and only if X ∼= Y .

11. Part 11: Basic artin algebras

• Basic artin algebras, examples and non-examples

• Proposition 49: Any artin algebra is Morita equivalent to a basic
artin algebra (for more details see the lectures).

• Theorem 50: Any basic finite-dimensional algebra over an alge-
braically closed field k is isomorphic to an algebra of the form
kΓ/(ρ) where Γ is a quiver with admissible relations ρ.

12. Part 12: Duality

• Duality of categories.

• D = Homk(−, k) form a duality on the category of finite-dimensional
k-vector spaces. Description of the isomorphism of functors Idvec(k) →
DD.

• Proposition 51: For a finite-dimensional algebra Λ the functor
D = Homk(−, k) extends to a well-defined contravariant functor

D : mod Λ→ mod Λop

which is a duality

• Description of D as a functor on the category of representations
of a quiver with admissible relations.
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• Lemma 52: The functor D preserves short exact sequences, simple
modules, and the length of any finitely generated module

13. Part 13: Injective modules

• Injective module, essential submodule, injective envelope, socle of
a module.

• Proposition 53: Λ finite-dimensional algebra, P ∈ mod Λ. Then
P is projective if and only if D(P ) is injective

• Proposition 53: Any M ∈ mod Λ is a submodule of a projective
module

• Lemma 54: Λ artin R-algebra, X ∈ mod Λ, and A submodule of
X. Then A is an essential submodule of X if and only if socX ⊆ A
if and only if socX = socA

• Proposition 55: Λ artin R-algebra, (0) 6= A ∈ mod Λ. The follow-
ing hold

– A map A→ I is an injective envelope if it is a monomorphism,
I is injective, and soc I = socA.

– Injective envelopes are unique up to isomorphism

– If I is injective and A → I is a morphism such that the
restriction socA → I is an injective envelope, then A → I is
an injective envelope.

• Lemma 56: A ∈ mod Λ where Λ is an artin R-algebra. Then
socA = {a ∈ A | rad Λ · a = (0)}.

• socA ∼= HomΛ(Λ/ rad Λ, A)

• The duality D(−) gives a bijection between projective covers in
mod Λ and injective envelopes in mod Λop.

• Λ finite-dimensional algebra. There is a bijection between iso-
morphism classes of simple Λ-modules and isomorphism classes of
indecomposable injective Λ-modules.

• Socle of a representation.
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