List of some of the main definitions and results from MA3203

1. Part 1: Quivers and path algebras

- Definition of a quiver (what is a path?)
- Path algebra of a quiver (how do you multiply two elements in $k\Gamma$, and what is the identity element in $k\Gamma$).
- Definition of k-algebras. Why is $k\Gamma$ a k-algebra?
- Proposition 1: $k\Gamma$ is finite dimensional if and only if Γ has no oriented cycles
- Proposition 2: If $\Gamma = (\Gamma_0, \Gamma_1)$ has no oriented cycles, then $k\Gamma$ is semisimple if and only if $\Gamma_1 = \emptyset$.
- Proposition 3: If J consists of all linear combinations of all nontrivial paths of $k\Gamma$, then J is an ideal of $k\Gamma$ and $k\Gamma/J \cong k \times \cdots \times k$ where the product is taken $|\Gamma_0|$ times.
- Γ is a connected quiver if and only if $k\Gamma$ is a connected k-algebra (Given as a exercise, not necessary to know the proof).
- 2. Part 2: Representations of quivers and homomorphisms of such
 - Quiver representations + examples (what is the zero representation, what are the simple representations, what is an indecomposable representation, what is a subrepresentation, what is a morphism between representations, what is a kernel of a morphism between representations, what is a image of a morphism between representations)
 - The correspondence between modules over the path algebra $k\Gamma$ and representations of the quiver Γ .

- Definition of indecomposable modules. Definition of finite representation type of an algebra
- Theorem 4: k field of characteristic p and G a finite group such that p divides |G|. Then the group algebra kG is of finite representation type if and only if all Sylow subgroups of G are cyclic.
- Theorem 5: Γ connected quiver without oriented cycles. Then $k\Gamma$ is of finite representation type if and only if the underlying graph of Γ is a Dynkin diagram.
- 3. Part 3: Quivers with relations, quotients of path algebras and modules over such
 - Definition of a relation in a quiver, definition of quivers with relations. Definition of an admissible relation.
 - Correspondence between representations of a quiver Γ with relations $\rho = {\sigma_l}_{l \in I}$ and modules over the algebra $k\Gamma/(\rho)$.
- 4. Part 4: Modules of finite length and Jordan-Hölder theorem
 - Generalized composition series, composition series, composition factors, finite length of a module, + examples. $m_S^{\mathcal{F}}(A)$ and $l_{\mathcal{F}}(A)$ for a module A, a simple module S, and a composition series \mathcal{F} .
 - Short exact sequences of modules. Short exact sequences of representations.
 - Given a short exact sequence $0 \to A \to B \to C \to 0$, and a generalized composition series \mathcal{F} for B, can get induced generalized composition series \mathcal{F}' and \mathcal{F}'' of A and C (Proposition 7).
 - Theorem 9 (Jordan-Hölder): If B is a module of finite length and \mathcal{F} and \mathcal{G} are generalized composition series of B, then $m_S^{\mathcal{F}}(B) = m_S^{\mathcal{G}}(B)$ and $l_{\mathcal{F}}(B) = l_{\mathcal{G}}(B)$
 - Proposition 11: If $f: A \to A$ is an endomorphism of a module A of finite length, then f is an isomorphism if and only if it is a monomorphism if and only if it is an epimorphism.
 - Proposition 12: If $0 \to A \to B \to C \to 0$ is exact and A and C have finite length, then B has finite length and l(A)+l(C) = l(B).

- Proposition 13: The subcategory of finite length modules is closed under extensions, and is the smallest subcategory closed under extensions and containing the simple modules.
- Proposition 14: A module is of finite length if and only if it is Noetherian and Artinian
- A ring Λ is left artinian if and only if Λ has finite length as a left Λ -module
- For a left artinian ring Λ , the modules of finite length coincide with the finitely generated modules.

5. Part 5: The radical of rings and modules

- Jacobson radical of a ring + examples
- Proposition 16 + Exercise: Λ ring, $\lambda \in \Lambda$. The following are equivalent:
 - $-\lambda \in \operatorname{rad} \Lambda$
 - $-1 x\lambda$ is left invertible for all $x \in \Lambda$
 - $-1 x\lambda$ has a two-sided inverse for all $x \in \Lambda$
 - $-1 \lambda x$ has a two-sided inverse for all $x \in \Lambda$
 - $-\lambda \cdot S = (0)$ for all simple left Λ -modules S

(Not necessary to remember the proof)

- $\operatorname{rad} \Lambda = \operatorname{rad} \Lambda^{\operatorname{op}}$.
- Corollary 17: $\operatorname{rad} \Lambda = \bigcap_{S \text{ simple left } \Lambda \text{ module}} \operatorname{Ann}_{\Lambda} S$. In particular, $\operatorname{rad} \Lambda$ is a two-sided ideal.
- Theorem 18, Nakayama's lemma: M finitely generated Λ -module, I ideal of Λ contained in rad Λ . If $I \cdot M = M$, then M = 0.
- Lemma 19: If Λ is left artinian, then rad Λ is a nilpotent ideal. Furthermore, rad Λ is the largest nilpotent left ideal of Λ .
- Theorem 20: A ring Λ is semisimple if and only if it is left artinian and rad $\Lambda = 0$.
- Theorem 21: Λ left artinian ring. Then
 - $-\Lambda/\operatorname{rad}\Lambda$ is a semisimple ring
 - A left module M is semisimple if and only if $\operatorname{rad} \Lambda \cdot M = 0$

- There are only finitely many simple left Λ -modules, and they occur as direct summands of $\Lambda/\operatorname{rad} \Lambda$.
- Corollary 22: The following are equivalent:
 - $-\Lambda$ is left artinian
 - Every finitely generated $\Lambda\text{-module}$ has finite length
 - rad Λ is nilpotent and rad $(\Lambda)^i/\operatorname{rad}(\Lambda)^{i+1}$ is a finitely generated semimsimple Λ -module for all $i \geq 0$.
- Theorem 23: Λ left artinian and I a nilpotent left ideal of Λ . Then $I = \operatorname{rad} \Lambda$ if and only if Λ/I is semisimple.
- Proposition 24: Let (Γ, ρ) be a quiver with admissible relations. Then $\operatorname{rad}(k\Gamma/(\rho)) = J/\rho = \overline{J}$ where J is the ideal in $k\Gamma$ generated by the arrows.
- Small submodule, radical of a module.
- Proposition 25: B finitely generated Λ -module, $A \subseteq B$ is small if and only if $A \subseteq \operatorname{rad} B$.
- Theorem 26: Λ left artinian ring, A finitely generated Λ -module. Then rad $A = \text{rad } \Lambda \cdot A$.
- The radical of a representation + examples
- The top of A, defined as $A/\operatorname{rad} A$ for a module A over a left artinian ring Λ
- Λ left artinian, f: A → B morphism of finitely generated Λ-modules. Then f is surjective if and only if the induced map f: A/rad A → B/rad B is surjective.
- Essential epimorphism, examples, composition of essential epimorphisms is an essential epimorphism.
- Proposition 28: Λ left artinan, $f: A \to B$ surjective map of finitely generated Λ -modules. The following are equivalent:
 - -f is an essential epimorphism
 - $-\operatorname{Ker} f \subseteq \operatorname{rad} A$
 - $-\overline{f}: A/\operatorname{rad} A \to B/\operatorname{rad} B$ is an isomorphism
- 6. Part 6: Projective modules
 - Projective modules, free modules are projective,

- Proposition 29: A module is projective if and only if it is a direct summand of a free module.
- e idempotent of Λ , then Λe is a projective left Λ -module
- Projective cover of a module, examples.
- Theorem 30: Λ left artinian ring. Then any finitely generated Λ module has a projective cover, which is unique up to isomorphism
- Proposition 31: Λ left artinian, f: P → A surjective morphism of Λ-modules with P projective. Then f is a projective cover if and only if f: P/rad P → A/rad A is an isomorphism.
- Proposition 31: Λ left artinian, then the map $f: P_1 \oplus P_2 \oplus \cdots \oplus P_n \to A_1 \oplus A_2 \oplus \cdots \oplus A_n$ defined by

$$(p_1, p_2, \cdots, p_n) \mapsto (f_1(p_1), f_2(p_2), \cdots, f_n(p_n))$$

is a projective cover if and only if each $f_i\colon P_i\to A_i$ is a projective cover

- Proposition 32: The following hold for a left artinian ring Λ and a finitely generated projective module P:
 - $-P \rightarrow P/ \operatorname{rad} P$ is a projective cover
 - Q finitely generated projective module, then $P \cong Q$ if and only if $P/\operatorname{rad} P \cong Q/\operatorname{rad} Q$.
 - P is indecomposable if and only if $P/\operatorname{rad} P$ is simple
 - $-P = \bigoplus_{i=1}^{n} P_i \cong \bigoplus_{j=1}^{m} Q_j$ with P_i, Q_j indecomposable, then m = n and exists permutation π of $\{1, 2, \dots, m\}$ such that $P_i \cong Q_{\pi(i)}$ for all $1 \le i \le n$.
- Corollary 33: Λ left artinian, and let S_1, S_2, \dots, S_n be the simple Λ -modules. Let P_i be the projective cover of S_i . Then the indecomposable Λ -modules are up to isomorphism just the modules P_1, \dots, P_n
- Lemma 34: Λ left artinian, $f: P \to M$ morphism of finitely generated Λ -modules. Assume the composite $P \xrightarrow{f} M \xrightarrow{\pi_m} M/\operatorname{rad} M$ is a projective cover. Then f is a projective cover.
- Local rings, examples for finite-dimensional algebras.
- Proposition 35: Λ local, then 0 and 1 are the only idempotents

- Proposition 37: Λ left artinian, P finitely generated Λ -module. The following are equivalent:
 - P is indecomposable
 - $\operatorname{End}_{\Lambda}(P)$ is local
 - rad P is the unique maximal submodule of P
 - $-P/\operatorname{rad} P$ is simple
- Corollary 38: A left artinian. The following are equivalent:
 - $-\Lambda$ local
 - $\operatorname{rad} \Lambda$ unique maximal left ideal
 - $-\Lambda/\operatorname{rad}\Lambda$ is simple
- Proposition 39: Λ left artinian. The following hold:
 - the identity $1 \in \Lambda$ can be written as a sum $1 = e_1 + e_2 + \dots + e_n$ of primitive orthogonal idempotents
 - $-e_1, e_2, \cdots e_n$ orthogonal idempotents, and $e = e_1 + e_2 + \cdots + e_n$, then $\Lambda e = \Lambda e_1 \oplus \Lambda e_2 \oplus \cdots \oplus \Lambda e_n$
 - $-e \neq 0$ idempotent. Then e is primitive if and only if Λe is indecomposable
- Proposition 40: Λ left artinian. Any finitely generated projective module can be written as a sum of indecomposable projective modules in a unique way up to isomorphism and permutation of the summands.

7. Part 7: Krull-Remak-Schmidt theorem

- Lemma 41 (Fitting lemma): Λ ring, M a Λ -module of finite length, $\phi: M \to M$ morphism of Λ -modules. Then there exists an $n \ge 1$ such that $M = \operatorname{Im} \phi^n \oplus \operatorname{Ker} \phi^n$.
- Theorem 42: M finitely generated Λ -module where Λ is a left artinian ring. Then M is indecomposable if and only if $\operatorname{End}_{\Lambda}(M)$ is a local ring.
- Theorem 43 (Krull–Remak–Schmidt theorem): Λ left artinian ring, M finitely generated Λ -module. Then M can be written as a sum of indecomposable Λ -modules in a unique way up to isomorphism and permuation of the summands.

8. Part 8: Artin algebras

- R-algebras for R a commutative ring
- Definition of an artin *R*-algebra. Any artin *R*-algebra is a left artinian ring (Proposition 44 c))
- Proposition 44 a) and b): Λ artin *R*-algebra. Then $\operatorname{Hom}_{\Lambda}(A, B)$ is a finitely generated *R*-module for any finitely generated left Λ modules *A* and *B*. Also $\operatorname{End}_{\Lambda}(A)$ is an artin *R*-algebra for any
 finitely generated left Λ -module *A*.
- 9. Part 9: Categories and functors
 - What is a category, examples of categories, isomorphisms in categories, subcategories, full subcategories + examples
 - Covariant and contravariant functors + examples (Hom-functor)
 - preadditive R-category for a commutative ring R. Additive R-functors + examples
 - Morphism of functors (also called natural transformations). Examples
 - Equivalences of (R) categories. A functor is an equivalence if and only if it is full, faithful and dense (Proposition 45).
 - Theorem 46: (Γ, ρ) quiver with admissible relations. Then the category $\operatorname{Rep}(\Gamma, \rho)$ is equivalent to $\operatorname{mod} \Lambda$, where $\Lambda = k\Gamma/(\rho)$. Description of this equivalence.
- 10. Part 10: Projectivization
 - Lemma 47: Have isomorphism

 $\operatorname{Hom}_{\Lambda}(A, B_1 \oplus B_2) \cong \operatorname{Hom}_{\Lambda}(A, B_1) \oplus \operatorname{Hom}_{\Lambda}(A, B_2)$

of left $\operatorname{End}_{\Lambda}(A)^{\operatorname{op}}$ -modules. Dually, have isomorphism

 $\operatorname{Hom}_{\Lambda}(A_1 \oplus A_2, B) \cong \operatorname{Hom}_{\Lambda}(A_1, B) \oplus \operatorname{Hom}_{\Lambda}(A_2, B)$

of left $\operatorname{End}_{\Lambda}(B)$ -modules

• Proposition 48: Λ artin *R*-algebra, *A* finitely generated Λ -module, $\Gamma = \operatorname{End}_{\Lambda}(A)^{\operatorname{op}}$. Then $e_A(X)$ is a projective Γ -module, and

$$e_A$$
: add $A \to \mathcal{P}(\Gamma)$

is an equivalence of *R*-categories, where $\mathcal{P}(\Gamma)$ is the subcategory of mod Γ of finitely generated projective Γ -modules.

- Lemma 49: Same assumptions as in Proposition 48. The following hold:
 - (a) $X \neq 0$ in add A if and only if $e_A(X) \neq 0$ in $\mathcal{P}(\Gamma)$.
 - (b) $X \in \text{add } A$, then X is indecomposable if and only if $e_A(X)$ is indecomposable.
 - (c) $X, Y \in \text{add } A$, then $e_A(X) \cong e_A(Y)$ if and only if $X \cong Y$.
- 11. Part 11: Basic artin algebras
 - Basic artin algebras, examples and non-examples
 - Proposition 49: Any artin algebra is Morita equivalent to a basic artin algebra (for more details see the lectures).
 - Theorem 50: Any basic finite-dimensional algebra over an algebraically closed field k is isomorphic to an algebra of the form $k\Gamma/(\rho)$ where Γ is a quiver with admissible relations ρ .
- 12. Part 12: Duality
 - Duality of categories.
 - D = Hom_k(-, k) form a duality on the category of finite-dimensional k-vector spaces. Description of the isomorphism of functors Id_{vec(k)} → DD.
 - Proposition 51: For a finite-dimensional algebra Λ the functor $D = \operatorname{Hom}_k(-, k)$ extends to a well-defined contravariant functor

$$D\colon \operatorname{mod}\Lambda \to \operatorname{mod}\Lambda^{\operatorname{op}}$$

which is a duality

• Description of D as a functor on the category of representations of a quiver with admissible relations.

- Lemma 52: The functor D preserves short exact sequences, simple modules, and the length of any finitely generated module
- 13. Part 13: Injective modules
 - Injective module, essential submodule, injective envelope, socle of a module.
 - Proposition 53: Λ finite-dimensional algebra, $P \in \text{mod } \Lambda$. Then P is projective if and only if D(P) is injective
 - Proposition 53: Any $M \in \text{mod}\Lambda$ is a submodule of a projective module
 - Lemma 54: Λ artin *R*-algebra, $X \in \text{mod } \Lambda$, and *A* submodule of *X*. Then *A* is an essential submodule of *X* if and only if soc $X \subseteq A$ if and only if soc X = soc A
 - Proposition 55: Λ artin *R*-algebra, $(0) \neq A \in \text{mod } \Lambda$. The following hold
 - A map $A \rightarrow I$ is an injective envelope if it is a monomorphism, I is injective, and soc I = soc A.
 - Injective envelopes are unique up to isomorphism
 - If I is injective and $A \to I$ is a morphism such that the restriction soc $A \to I$ is an injective envelope, then $A \to I$ is an injective envelope.
 - Lemma 56: $A \in \text{mod } \Lambda$ where Λ is an artin *R*-algebra. Then $\text{soc } A = \{a \in A \mid \text{rad } \Lambda \cdot a = (0)\}.$
 - $\operatorname{soc} A \cong \operatorname{Hom}_{\Lambda}(\Lambda / \operatorname{rad} \Lambda, A)$
 - The duality D(-) gives a bijection between projective covers in $\operatorname{mod} \Lambda$ and injective envelopes in $\operatorname{mod} \Lambda^{\operatorname{op}}$.
 - Λ finite-dimensional algebra. There is a bijection between isomorphism classes of simple Λ-modules and isomorphism classes of indecomposable injective Λ-modules.
 - Socle of a representation.