MA3203 - Problem Set 12 Hints and Answers

- (3a) The projective dimensions of Λe_1 and Λe_2 are 0. The projective dimension of S_1 is 1.
- (3b) Both simple modules have projective dimension infinity.
- (3d) Suppose that Λ is left hereditary and let M be an arbitrary left Λ -module. Then there exists a free module F an a surjection $F \xrightarrow{f} M$. Now since Λ is left hereditary, we know that ker(f) is projective and so $0 \to \text{ker}(f) \to F \to M \to 0$ is a projective resolution for M of length 1.¹ We conclude that the projective dimension of M is at most 1.
- (3e) Suppose that Λ has left global dimension 0. This means every left Λ -module is projective. Now let M be an indecomposable left Λ module and let $N \subsetneq M$ be a proper submodule. Since M is projective, the identity $M/N \to M/N$ therefore factors through the quotient map $M \to M/N$. This implies that $M/N \cong M$ and so N = 0. We conclude that M is simple.

Now since Λ is a finitely generated Λ -module, it is Noetherian. Therefore we can write $\Lambda \cong P_1 \oplus \cdots \oplus P_n$ as a finite direct sum of indecomposable projective Λ -modules. As we have shown that each indecomposable projective is simple, this implies that Λ is semisimple.

Now suppose that Λ is semisimple and let M be a left Λ -module. Then M is isomorphic to a direct sum of simple modules, all of which are projective. In particular, M has projective dimension 0.

(4a) Hint: Suppose $\operatorname{Hom}(P, M) \neq 0$. Since M has finite length, there exists a nonnegative integer m so that $\operatorname{Hom}_{\Lambda}(P, \operatorname{rad}^{m} M) \neq 0$ and $\operatorname{Hom}_{\Lambda}(P, \operatorname{rad}^{m+1} M) = 0$. This means that $P/\operatorname{rad} P$ is a direct summand of $\operatorname{rad}^{m} M/\operatorname{rad}^{m+1} M$. In particular, there exists $\operatorname{rad}^{m+1} M \subseteq N \subseteq \operatorname{rad}^{m} M$ so that $N/\operatorname{rad}^{m+1} M \cong P/\operatorname{rad} P$. Now argue that N and rad^{m+1} appear together in a composition series for M.

For the reverse direction, use the fact that P is projective to show that if $N/L \cong P/\mathrm{rad}P$ then $\mathrm{Hom}_{\Lambda}(P, N) \neq 0$.

(4b) Hint: Recall that $M(i) = e_i M$. Now consider ϕ : Hom_{Λ}($\Lambda e_i, M$) $\rightarrow e_i M$ given by $\phi(f) = f(e_i)$. Since e_i is idempotent, we have $\phi(f) = f(e_i) = f(e_i^2) = e_i f(e_i) \in e_i M$, so ϕ is well defined as a map on sets. Show that ϕ is in fact an isomorphism of vector spaces.

¹When a projective resolution has finite length, it is usually not written as an infinite series of morphisms. So in this particular example, the projective resolution we are referring to has $P_i = 0$ for all $i \ge 2$.