MA3203 - Problem Set 12 Hints and Answers

(3a) The projective dimensions of Λe_{1} and Λe_{2} are 0 . The projective dimension of S_{1} is 1 .
(3b) Both simple modules have projective dimension infinity.
(3d) Suppose that Λ is left hereditary and let M be an arbitrary left Λ-module. Then there exists a free module F an a surjection $F \xrightarrow{f} M$. Now since Λ is left hereditary, we know that $\operatorname{ker}(f)$ is projective and so $0 \rightarrow \operatorname{ker}(f) \rightarrow F \rightarrow M \rightarrow 0$ is a projective resolution for M of length $1 .{ }^{1}$ We conclude that the projective dimension of M is at most 1 .
(3e) Suppose that Λ has left global dimension 0 . This means every left Λ-module is projective. Now let M be an indecomposable left Λ module and let $N \subsetneq M$ be a proper submodule. Since M is projective, the identity $M / N \rightarrow M / N$ therefore factors through the quotient $\operatorname{map} M \rightarrow M / N$. This implies that $M / N \cong M$ and so $N=0$. We conclude that M is simple.
Now since Λ is a finitely generated Λ-module, it is Noetherian. Therefore we can write $\Lambda \cong P_{1} \oplus \cdots \oplus P_{n}$ as a finite direct sum of indecomposable projective Λ-modules. As we have shown that each indecomposable projective is simple, this implies that Λ is semisimple.

Now suppose that Λ is semisimple and let M be a left Λ-module. Then M is isomorphic to a direct sum of simple modules, all of which are projective. In particular, M has projective dimension 0 .
(4a) Hint: Suppose $\operatorname{Hom}(P, M) \neq 0$. Since M has finite length, there exists a nonnegative integer m so that $\operatorname{Hom}_{\Lambda}\left(P, \operatorname{rad}^{m} M\right) \neq 0$ and $\operatorname{Hom}_{\Lambda}\left(P, \operatorname{rad}^{m+1} M\right)=0$. This means that $P / \mathrm{rad} P$ is a direct summand of $\operatorname{rad}^{m} M / \mathrm{rad}^{m+1} M$. In particular, there exists $\operatorname{rad}^{m+1} M \subseteq N \subseteq \operatorname{rad}^{m} M$ so that $N / \operatorname{rad}^{m+1} M \cong P / \operatorname{rad} P$. Now argue that N and rad^{m+1} appear together in a composition series for M.

For the reverse direction, use the fact that P is projective to show that if $N / L \cong P / \operatorname{rad} P$ then $\operatorname{Hom}_{\Lambda}(P, N) \neq 0$.
(4b) Hint: Recall that $M(i)=e_{i} M$. Now consider $\phi: \operatorname{Hom}_{\Lambda}\left(\Lambda e_{i}, M\right) \rightarrow e_{i} M$ given by $\phi(f)=f\left(e_{i}\right)$. Since e_{i} is idempotent, we have $\phi(f)=f\left(e_{i}\right)=f\left(e_{i}^{2}\right)=e_{i} f\left(e_{i}\right) \in e_{i} M$, so ϕ is well defined as a map on sets. Show that ϕ is in fact an isomorphism of vector spaces.

[^0]
[^0]: ${ }^{1}$ When a projective resolution has finite length, it is usually not written as an infinite series of morphisms. So in this particular example, the projective resolution we are referring to has $P_{i}=0$ for all $i \geq 2$.

