MA3203 - Problem Set 4 (Quivers with Relations)

In all problems, K denotes a field and all representations are representations over K.

1. (Based on [1, Exercise II.14]) Let $Q=\alpha G_{\sim}^{1}{ }^{1}$ and let $\Lambda=K Q /\left(\alpha^{2}, \beta^{2}, \beta \alpha\right)$.
(a) What is the dimension of Λ as a vector space?
(b) Let $K\langle x, y\rangle$ be the ring of polynomials with coefficients in K and noncommuting variables x and y (that is, $x y \neq y x)$. Show that $\Lambda \cong K\langle x, y\rangle /\left(x^{2}, y^{2}, y x\right)$.
(c) Let $A=\left\{\left[\begin{array}{lll}a & 0 & 0 \\ b & a & 0 \\ c & d & a\end{array}\right]: a, b, c, d \in K\right\}$. Show that A is a ring and that $\Lambda \cong A$.
2. Let $Q=\left(Q_{0}, Q_{1}\right)$ be an arbitrary quiver. The ideal of $K Q$ generated by Q_{1} is called the arrow ideal of Q (or technically $K Q$), and is often denoted R_{Q}. An arbitrary ideal $I \subseteq K Q$ is called admissible if there exists an integer $m \geq 2$ so that $R_{Q}^{m} \subseteq I \subseteq R_{Q}^{2}$.
(a) Show that if I is admissible, then $K Q / I$ is finite dimensional (even if $K Q$ is not).
(b) [1, Exercise II.7a] Let $\Gamma={ }^{\alpha} C^{1} \underset{\gamma}{\stackrel{\beta}{\rightleftarrows}} 2$ and let $\rho=\left\{\alpha^{2}, \beta \gamma, \gamma \beta-\gamma \alpha \beta\right\}$. Show that (ρ) is an admissible ideal.
(c) Compute $\operatorname{dim}_{K} K \Gamma /(\rho)$.
3. Let $Q=1 \underset{\alpha^{*}}{\stackrel{\alpha}{\rightleftarrows}} 2 \underset{\beta^{*}}{\stackrel{\beta}{\rightleftarrows}} 3$ and let $\Lambda=K Q /\left(\alpha^{*} \alpha, \beta \beta^{*}, \alpha \alpha^{*}+\beta^{*} \beta\right)$. This algebra is called the preprojective algebra of type A_{3} and has many interesting properties.
(a) Find the representation corresponding to the module Λe_{i} for $i=1,2,3$.
(b) Show that there exist morphisms $\Lambda e_{2} \rightarrow \Lambda e_{2}$ which are not invertible.
(c) Show that Λe_{2} is indecomposable.
(d) Find the representation corresponding to Λ considered as a module over itself. Hint: recall that $\Lambda=\Lambda \cdot 1_{\Lambda}$. What is the identity element of Λ ?
4. [1, Exercise II.15] Find a bound quiver algebra which is isomorphic to each of the following triangular matrix algebras:
(a) $\left[\begin{array}{ccccc}K & 0 & 0 & 0 & 0 \\ K & K & 0 & 0 & 0 \\ K & 0 & K & 0 & 0 \\ K & 0 & K & K & 0 \\ K & K & K & K & K\end{array}\right]$,
(b) $\left[\begin{array}{ccccc}K & 0 & 0 & 0 & 0 \\ K & K & 0 & 0 & 0 \\ K & 0 & K & 0 & 0 \\ K & 0 & 0 & K & 0 \\ K & K & K & K & K\end{array}\right]$,
(c) $\left[\begin{array}{ccccc}K & 0 & 0 & 0 & 0 \\ 0 & K & 0 & 0 & 0 \\ K & K & K & 0 & 0 \\ K & 0 & 0 & K & 0 \\ K & K & K & K & K\end{array}\right]$

References

[1] I. Assem, D. Simson, and A. Skowroński, Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory, London Math. Soc. Stud. Texts 65, Cambridge Univ. Press (2006).

