# Galois theory - Problem Set 4 

To be solved on Thursday 21.03

## Chapter 17.1

Problem 1. (Exercise 17.1.1 in the book.) Let $E=\mathbb{Q}(\sqrt[3]{2}, \omega)$ be an extension field of $\mathbb{Q}$, where $\omega^{3}=1$, $\omega \neq 1$. For each of the following subgroups $S_{i}$ of the $\operatorname{group} G(E / \mathbb{Q})$ find $E_{S_{i}}$.
(a) $S_{1}=\left\{1, \sigma_{2}\right\}$, where $\sigma_{2}$ is defined by $\sigma_{2}(\sqrt[3]{2})=\sqrt[3]{2} \omega^{2}$ and $\sigma_{2}(\omega)=\omega^{2}$.
(b) $S_{2}=\left\{1, \sigma_{3}\right\}$, where $\sigma_{3}$ is defined by $\sigma_{3}(\sqrt[3]{2})=\sqrt[3]{2} \omega$ and $\sigma_{3}(\omega)=\omega^{2}$.
(c) $S_{3}=\left\{1, \sigma_{4}\right\}$, where $\sigma_{4}$ is defined by $\sigma_{4}(\sqrt[3]{2})=\sqrt[3]{2}$ and $\sigma_{4}(\omega)=\omega^{2}$.
(d) $S_{4}=\left\{1, \sigma_{5}, \sigma_{6}\right\}$ where $\sigma_{5}$ is defined by $\sigma_{5}(\sqrt[3]{2})=\sqrt[3]{2} \omega$ and $\sigma_{5}(\omega)=\omega$ and $\sigma_{6}$ is defined by $\sigma_{6}(\sqrt[3]{2})=$ $\sqrt[3]{2} \omega^{2}$ and $\sigma_{6}(\omega)=\omega$.

Problem 2. (Exam June 2015, Problem 5.) Let $E=F\left(\alpha_{1}, \alpha_{2}\right)$ be a Galois extension of a field $F$, and let $K_{1}=F\left(\alpha_{1}\right)$ and $K_{2}=F\left(\alpha_{2}\right)$. Consider the subgroups $H_{1}=G\left(E / K_{1}\right)$ and $H_{2}=G\left(E / K_{2}\right)$ of the Galois group $G(E / F)$.
(a) Show that $H_{1} \cap H_{2}=\{e\}$, that is, the intersection of $H_{1}$ with $H_{2}$ is the trivial subgroup of $G(E / F)$.
(b) Suppose that each element $g_{1} \in H_{1}$ maps $K_{2}$ to $K_{2}$, and that each element $g_{2} \in H_{2}$ maps $K_{1}$ to $K_{1}$. Show that $g_{1} g_{2}=g_{2} g_{1}$ for all $g_{1} \in H_{1}, g_{2} \in H_{2}$.

## Chapter 17.2

Problem 3. (Exercise 17.2 .1 in the book.) Find the Galois groups $G(K / \mathbb{Q})$ of the following extensions $K$ of $\mathbb{Q}$ :
(a) $K=\mathbb{Q}(\sqrt{3}, \sqrt{5})$.
(b) $K=\mathbb{Q}(\alpha)$, where $\alpha=\cos 2 \pi / 3+i \sin 2 \pi / 3$.
(c) $K$ is the splitting field of $x^{4}-3 x^{2}+4 \in \mathbb{Q}[x]$.

Problem 4. (Exam May 2017, Problem 3(c)-(e).) Let $E$ be the splitting field of $f(x)=x^{17}-2 \in \mathbb{Q}[x]$ over $\mathbb{Q}$, that is $E=\mathbb{Q}(\omega, \sqrt[17]{2})$ where $\omega=e^{\frac{2 \pi i}{17}}$. (see Problem 7 in Problem Set 3).
(a) Let $G=\operatorname{Gal}(E / \mathbb{Q})$ be the Galois group of $E$ over $\mathbb{Q}$. Show that there exists an intermediate field $L$, $\mathbb{Q} \subseteq L \subseteq E$, such that $L$ corresponds by the Galois correspondence to a normal subgroup $H$ of $G$ of order 17. Explain your argument.
(b) Show that there exists an intermediate field $M, \mathbb{Q} \subseteq M \subseteq E$, such that $[M: \mathbb{Q}]=34$. [Hint: Use Sylov's Theorem.]
(c) Show that $G$ is non-abelian. [Hint: $G$ abelian implies that all subgroups are normal.]

Problem 5. (Exam June 2015, Problem 7.) Let $f(x)=x^{5}-x-1 \in \mathbb{Z}_{5}[x]$ and $E=\mathbb{Z}_{5}(\beta)$, where $\beta$ is a root of $f(x)$.
(a) Show that $\beta+1, \beta+2, \beta+3, \beta+4$ are also roots of $f(x)$. Deduce that $\beta \notin \mathbb{Z}_{5}$.
(b) Define $\sigma \in G\left(E / \mathbb{Z}_{5}\right)$ by $\sigma(\beta)=\beta+1$. Find the order of $\sigma$ in $G\left(E / \mathbb{Z}_{5}\right)$, and describe the action of $\sigma$ on the roots of $f(x)$.
(c) Use the above and the FTGT to deduce that $f(x)$ is irreducible, and that $\left[E: \mathbb{Z}_{5}\right]=5$.

Problem 6. (Exam June 2015, Problem 6.) Let $F \subseteq E$ be a Galois extension of degree $[E: F]$.
(a) Is it possible that $[E: F]=4$ and that there are precisely two proper intermediate fields between $E$ and $F$ ?
(b) Suppose that $[E: F]=6$ and that $E$ is the splitting field of a polynomial of degree 3 (and a Galois extension of $F$.) How many proper intermediate fields are there between $E$ and $F$ ?

Problem 7. (Exam May 2017, Problem 5, Exam May 2013, Problem 6.) Let $N$ be a Galois extension of $K$ such that $G(N / K)$ is abelian. Let $\alpha \in N$ and let $p(x) \in K[x]$ be the minimal polynomial of $\alpha$ over $K$. Show that all roots of $p(x)$ lie in $K(\alpha)$.

Problem 8. (Exercise 17.2.3 in the book.) Let $u \in \mathbb{R}$ and let $\mathbb{Q}(u)$ be a normal extension of $\mathbb{Q}$ such that $[\mathbb{Q}(u): \mathbb{Q}]=2^{m}$, where $m \geq 0$. Show that there exist intermediate fields $K_{i}$ such that

$$
K_{0}=\mathbb{Q} \subseteq K_{1} \subseteq K_{2} \subseteq \cdots \subseteq K_{m}=\mathbb{Q}(u)
$$

where $\left[K_{i}: K_{i-1}\right]=2$. (Hint: Sylow's first theorem.)

## Extra problems

The following problems may be a bit more challenging, in case you feel like you need something more.
Problem 9. (Chapter 17.2) (For those with a background on category theory, for example MA3204) Let $F \subseteq E$ be a field extension. Define two categories $\mathcal{F}$ and $\mathcal{G}$ by

$$
\operatorname{Obj}(\mathcal{F})=\{\text { intermediate fields } F \subseteq K \subseteq E\} \text { and } \operatorname{Obj}(\mathcal{G})=\{\text { subgroups } H<G(E / F)\}
$$

and morphisms given by inclusion in both $\mathcal{F}$ and $\mathcal{G}$. Let $E_{-}: \mathcal{G} \rightarrow \mathcal{F}$ be the contravariant functor given by $E_{-}(H)=E_{H}$, and let $G(E /-): \mathcal{F} \rightarrow \mathcal{G}$ be the contravariant functor given by $G(E /-)(K)=G(E / K)$.
(a) Show that the functors $E_{-}$and $G(E /-)$ are well-defined.
(b) Show that $\left(G(E /-), E_{-}\right)$form an adjoint pair between $\mathcal{F}$ and $\mathcal{G}^{\text {op }}$.
(c) Show that if $F \subseteq E$ is a Galois extension, then $E_{-}$is an isomorphism of categories with inverse given by $G(E /-)$.

Remark: This is an example of a special type of adjunction between poset categories called Galois connection.

Problem 10. (Chapter 17.2) Let $F$ be a field and $f(x) \in F[x]$ be a polynomial of degree $n \geq 1$. Let $E$ be the splitting field of $f(x)$. Show that $[E: F]$ divides $n!$.

Problem 11. (Chapter 17.2) Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 3 . Let $E$ be the splitting field of $f(x)$. What are the possible values of $[E: \mathbb{Q}]$ ? Provide an explicit example for each such possible value.

