Galois theory - Problem Set 6

To be solved on Friday 05.05

Problem 1. Is the polynomial $f(x) = x^5 - x^4 - x + 1$ solvable by radicals?

Problem 2. Find for which $n \in \mathbb{Z}_{\geq 1}$ is $\sqrt[n]{2}$ constructible.

Problem 3. (Exercise 18.3.4 in the book.) Prove that the regular 17-gon is constructible with ruler and compass.

Problem 4. (18.5.1 in the book.) Show that the angle $\frac{2\pi}{5}$ can be trisected using ruler and compass.

Problem 5. (Exercise 18.3.2 in the book.) Show that it is impossible to construct a regular 9-gon or 7-gon using ruler and compass.

Problem 6. (Exercise 18.3.3 in the book.) Show that it is possible to trisect 54° using ruler and compass.

Problem 7. Let \mathbb{K} be the set of constructible numbers and \mathbb{A} be the set of algebraic numbers.

- (a) Does $\mathbb{K} \subseteq \mathbb{A}$ hold?
- (b) Does $\mathbb{A} \subseteq \mathbb{K}$ hold?

Problem 8. (Exercise 18.3.1 in the book.) Show that the following polynomials are not solvable by radicals over \mathbb{Q} :

- (a) $x^5 9x + 3$.
- (b) $2x^5 5x^4 + 5$.
- (c) $x^5 8x + 6$.
- (d) $x^5 4x + 2$.

Problem 9. (Exercise 18.3.5 in the book.) Find which of the following numbers are constructible:

- (i) $\sqrt{3} + 1$.
- (ii) $\pi^2 + 1$.
- (iii) $\sqrt{\sqrt{3}-1} + 1$.
- (iv) $\sqrt[3]{2} + 1$.
- (v) $\sqrt[4]{\sqrt{2} + \sqrt{5}}$.

Problem 10. Let *L* be a line and *P* be a point in \mathbb{C} .

- (a) Using ruler and compass, show that we may draw the line that goes through P and is perpendicular to L.
- (b) Using ruler and compass, show that we may draw the line that goes through P and is parallel to L.

Problem 11. (a) Let G be a simple abelian group. Show that it is cyclic of prime order.

(b) Show that finite abelian groups are solvable. (*Hint*: you may use Problem 13(d), that is that the direct product of two solvable groups is solvable.)

Problem 12. Let $0 \le \theta < 2\pi$. We say that an angle of measure θ is *constructible* if there exist constructible $O, P, Q \in \mathbb{C}$ such that the segments (OP) and (OQ) form an angle of measure θ . Show that the following are equivalent.

- (a) An angle of measure θ is constructible.
- (b) The number $\cos(\theta)$ is constructible.
- (c) The number $\sin(\theta)$ is constructible.

Extra problems

The following problems may be a bit more challenging, in case you feel like you need something more.

Problem 13. Assume all groups in this exercise are finite.

- (a) Let G be a solvable group and H < G be a subgroup. Show that H is solvable.
- (b) Let G be a solvable group and $H \triangleleft G$ be a normal subgroup. Show that G/H is solvable.
- (c) Let G be a group and $H \triangleleft G$ be a normal subgroup. Show that if H and G/H are solvable, then G is also solvable.
- (d) Show that if G_1 and G_2 are solvable groups, then $G_1 \times G_2$ is a solvable group.

Problem 14. Show that the symmetric group S_n is solvable if and only if $n \leq 4$. (*Hint:* consider the cases n = 1, 2, 3, 4 and $n \geq 5$ separately.)

Problem 15. This problem aims to demonstrate that the last sentence of Theorem 18.5.9 in the book is wrong. That is, we show that there exists α such that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 4$ but α is not constructible.

Assume that $z \in \mathbb{K}$ is a constructible number.

- (a) Show that there exists a normal field extension $\mathbb{Q} \subseteq N$ such that $z \in N$ and $[N : \mathbb{Q}] = 2^n$ for some $n \ge 0$. (*Hint:* Use Theorem 17.9 to obtain a sequence of field extensions and use induction to show that each of the fields in that sequence is included in another field as part of a normal extension of degree some power of 2.)
- (b) Show that the splitting field of the minimal polynomial of z over \mathbb{Q} has degree 2^n for some $n \ge 0$.
- (c) Show that the Galois group of the minimal polynomial of z over \mathbb{Q} has degree 2^n for some $n \ge 0$.
- (d) Assume that we are given a monic polynomial $f(x) \in \mathbb{Q}[x]$ which is irreducible over \mathbb{Q} , of degree 4 and such that the Galois group of f(x) is S_4^{-1} . Let α be a root of f(x). Show that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 4$ but α is not constructible.

¹Example: $x^4 - x - 1$ is one such polynomial, although with our tools it is not easy to see that this polynomial satisfies these requirements. One needs the notions of *resolvent* and *discriminant* to show this.