Galois theory - Problem Set 5

To be solved on Monday 17.04

Problem 1. Let n € Z, n > 1. Show that the following hold.

(a) For every m € Z,, we have that the order of m is o(m) =
of Z,, if and only if ged(m,n) = 1.

m. In particular, m € Z,, is a generator

(b) The number of generators of the cyclic group Z,, is ¢(n).

Solution.

(a) Recall that ged(n, m)lem(n, m) = nm. Then

n
——m=1 =
aed(, m)m cm(n,m) =0 mod n,

n

and so o(m) | ged(n,m)*

It is enough to show that ——#—s | o(m) too. We have that
olm)m =0 mod n,

and so n { o(m)m. Since n | o(m)n, we obtain that n ‘ ged(o(m)m, o(m)n). It follows that n
o(m) ged(n, m) or that FERICED) ‘ o(m), as required.

(b) Since |Z,| = n is a cyclic group, an element m € Z,, is a generator if and only if o(m) = n. By part
(b) this is equivalent to ged(m,n) = 1. Hence there are as many generators of Z,, as elements m with
1 <m < n and ged(m,n) = 1. Since there are precisely ¢(n) such elements, the claim follows.

(c) Let d be a divisor of n. Recall that Z, has exactly one subgroup of order d, that is Hg = (%) (see
Theorem 4.4.4 in the book). In particular, we have Hy = Z4. Now let « € Z,, be an element of order
d. Then (z) is a subgroup of Z,, of order d and hence (x) = H; and x is a generator of Hy. Since
x € Z,, was arbitrary, it follows that every element of order d in Z,, is a generator of Hy = Z,4. Since
by part (b) we have that Z, has ¢(d) generators, we conclude that there are exactly ¢(d) elements of
order d in Z,. Since the order of any element in Z,, divides |Z,| = n, we have

n=|Zy| = _|{elements of order d in Z,}| = Y ¢(d),
d|n dln

as required.
Problem 2. (Exam May 2013, Problem 1)

(a) Let E be the splitting field of f(z) = 2'* — 1 over Q. Show that the Galois group G' = Gal(E/Q) is
abelian.

(b) Let E be the splitting field of g(z) = 27 4+ 1 over Q. Show that the Galois group G' = Gal(E/Q) is
abelian.



Solution.

(a) By Theorem 14.12(1) we have that F = Q(w) where w is a primitive 14-th root of unity. By Theorem
14.12(4) we have G = Gal(Q(w)/Q) = Z7, which is an abelian group.

(b) We have that 2'* —1 = (2" 4+ 1)(z" —1). Hence 7 +1 splits in £ = Q(w). It follows that the splitting
field F of 27 + 1 is a subfield of E. Since E' is the splitting field of 27 + 1, the extension Q C E is
normal. Since Q C F C E, we obtain by the FTGT(6) that

G = Gal(E/Q) = Gal(E/Q)/ Gal(E/E).

Therefore, G is isomorphic to a quotient group of the abelian group G = Gal(E/Q). Since quotient
groups of abelian groups are abelian, it follows that G is abelian.

Problem 3. (Exam May 2004, Problem 3) Let p be a prime. Let E be the splitting field of a? — 1 € Q[z]
over Q.

(a) Prove that Gal(E/Q) is abelian of order p — 1.

2mi
(b) Let w = e 3T . Prove that there exists a subfield F' of C such that [F'(w) : F] = 5.

Solution.

2mi
(a) Let f(z) = 2? —1 and w = e P . Then w is a primitive p-th root of unity and {w’ | 1 < i <}
are the roots of z? — 1. Hence F = Q(w). Since the minimal polynomial of w over Q is ®,(z) =
14+ x+---+2P71 it follows that [Q(w) : Q] = p—1 and {1,w,...,wP"2} is a Q-basis of E. Then an
element o € Gal(Q(w)/Q) is determined completely by its value o(w). Since ®,(0(w)) = o(®p(w)) =0,
we have that o(w) is a root of ®,(x). Hence o(w) = w’ with 1 <i < p — 1. Therefore

Gal(Qw)/Q) ={0; : Qw) > Qw) |1 <i<p—-1,0i(w) = w?, and ai|Q =idg}
Then the map

U:Z) — Gal(Q(w)/Q)
i g;

is well-defined and is clearly injective. Since both sets have p—1 elements, ¥ is also bijective. Moreover
we claim that U is a group homomorphism. Indeed, for i, j € Z; we have

O'Z‘j(w) = wij = 0;© oj(w).

Hence
‘I’(E) =0, =0,00; = ‘I’@ o ‘I’(D

Hence Gal(£/Q) is isomorphic to Z,* which is an abelian group of order p — 1.

(b) Consider the subgroup {1,2,4,8,16} of Z3;. By the map W in part (a) it corresponds to the subgroup
H = {01,02,04,08,016} of Gal(Q(w)/Q). By the FTGT the field Fy satisfies

QW) : Ex] = [Gal(Q(w)/Er)| = [H] = 5.

Since Q C Ey € Q(w) we have Q(w) € Ex(w) € Q(w) and so Ep(w) = Q(w). Therefore, by setting
F = Ey we have
[F(w): F]=[Eg(w): Ey] =[Qw) : Eg] =5,

as required.



Problem 4. (Exam May 2009, Problem 5.) Let FF C K be a Galois extension such that G(K/F) is cyclic
of order n and let o be a generator for G(K/F). Assume that F' contains a primitive n-th root w of unity.
Let @« € K\ F and let (w, @) # 0 be the Lagrange resolvent defined by

(w,0) = a+wo(a)+ - +w" 1o Ha).
(a) Show that a = a+o(a)+ -+ 0" !(a) is an element in F.
(b) Show that K = F'((w, @)).
(¢) Let b= (w,a)™. Show that b € F' and that K is the splitting field of 2™ — b € F[z] over F.
)

(d) Give an argument why z™ — b is an irreducible polynomial over F'.

Solution.

(a) Since G(K/F) is cyclic of order n and o € G(K/F) is a generator, we have that ¢ = idx. Hence

o(a) =o(a+o(a)+ - +0"*(a) + " H(a))
=a(@) +o*(a) + -+ 0" (a) +0"(a)
=o(a)+ o)+ -+ Ha)+a=a.

Hence o(a) = a. It follows that o’(a) = a for all 1 < i < n. Since (0) = G(K/F), it follows that
7(a) = a for any 7 € G(K/F). Hence a € Eg(x/p) = F, where the last equality follows by the
FTGT(1).

(b) Set H = G(K/F((w,))). Since F C F((w,a)) C K, we have that H < G(K/F) = (o). Hence there
exists I C {1,...,n} such that H = {o% | i € I}. Since 0'|F = idp and since w € F, we have o(w) = w.
Then we compute

o((w,a)) = o(a) + o(w)o?(a) + -+ oW H)o"(a) = o(a) + wo?(a) + - + W' la =W Hw, @),
where the last equality follows since w™ = 1. Therefore, for i € I we have o' € H and so

(w,0) =o' ((w, @) = (") (w, ).

We obtain that (w"~!)" =1 for all i € I. Equivalently, we have that n | i(n — 1) since w has order n.

Since ged(n — 1,m) = 1, we have that n | i. Since 1 < i < n we conclude that i = n. Hence I = {n}
and so H = {o"} = {idk }. But then by the FTGT(3) we have

(K F((w, )] = |G(K/F((w, @)))| = [H] = 1,
and so F((w,a)) = K.

(¢) We compute
o(b) = o((w,0)") = (o((w, )" = (" (w,a))" =w" D (w,a)" =1-b=0b.

Therefore, o¢(b) = b for all i > 1. Since o generates G(K/F), it follows that 7(b) = b for all 7 €
G(K/F). Hence b € Eg(x/r) = F, where the last equality follows by the FTGT(1).

The roots of 2" — b are (w, @), w(w, @), -+ ,w"(w,a). By part (b) we have that they all belong to K.
Hence ™ — b factors into linear factors in K. Moreover, assume to a contradiction that F¥ C X C K
is an intermediate field and that z™ — b factors into linear factors in X. Then (w,a) € X and so
K = F((w,a)) € X C K is a contradiction. Hence 2™ — b does not factor into linear factors in any
strict subfield of K and so K is the splitting field of 2™ — b.



(d) Since F C K is a Galois extension, and since K = F((w, «)) by part (b), we have that F C F((w, «))
is Galois. In particular, F C F((w,«)) is finite and has degree equal to the degree of the minimal
polynomial of (w,a). Assume to a contradiction that ™ — b is not irreducible. Since (w, @) is a root

of ™ — b, this implies that there exists an irreducible monic polynomial g(x) with (w, @) as a root and
deg(g(x)) < deg(z™ — b) = n. By the FTGT(3) we have

n > deg(g(z)) = [F((w,)) : F] = [K : F] = |G(K/F)| = n,
which is a contradiction. Hence 2™ — b is irreducible.

Problem 5. (Exam June 2014, Problem 2.) Let FF C E where F = GF(5%) and E = GF(52%). Describe
the Galois group G = Gal(E/F) and list the fields K such that F C K C E.

Solution. By Theorem 10.8 and uniqueness of finite fields we have [GF(5%*) : GF(5%)] = 2! = 8. Another
way to see this is to use the tower of field extensions GF(5) C GF(5%) C GF(52%). This gives

[GF(5%%) : GF(5)] = [GF(5**) : GF(5%)] - [GF(5%) : GF(5)].
Since [GF(p™) : GF(p)] = n, we conclude that
24 = [GF(5**) : GF(5%)] - 3

and so [GF(52%) : GF(5%)] = 8. By Theorem 10.8 we also have that GF(524) is the splitting field of 2> — z

over GF(5%) (the way to see this is to notice that every element of GF(52%) is a root of 25" — z, and since
24

2% —x can have at most 524 roots, it follows that GF(5%*) is the smallest field which contains all its roots).

Hence the extension GF(5%) C GF(5%*) is normal. Since it is also finite of degree 8 and separable because
GF(5%) is a perfect field (as it is finite), we conclude that GF(5%) C GF(5%*) is a Galois extension. By the
FTGT(3) we obtain that

|G| = |Gal(GF(5%*)/ GF(5%))| = [GF(5%*) : GF(5°)] = 8.

By Example 15.2(2) we have that G is a cyclic group as it is the Galois group of an extension of a finite
field. Hence G = Zg. The subgroups of Zg are

{0} < {0,4} < {0,2,4,6} < Zs.

By the FTGT these subgroups H correspond to intermediate fields between F' and F via the map H — Ep.
We have
Ez, = Eq = Ega(p/r) = F = GF(5%),

and
E{oy = B, = E = GF(5*).

For the subgroup H; = {0,4}, we have by the FTGT(2) and (3) that
2 =|H|=|Gal(E/Em,)| = [E : En,].

Hence if Ey, = GF(5™), then 2 = [E : Ey,] = 21 Therefore, Ey, = GF(5'?). Similarly, if H, = {0,2,4, 6},
then Eg, = GF(55). Therefore we obtain the tower of subfields

F = GF(5%) C GF(5°%) C GF(5'%) C GF(5**) = E.
Problem 6. (Exercise 18.2.4 in the book.) Let E be a finite separable normal extension over F' and let
G(E/F)={01=1,09,...,0,}. I & € E we define

n

Ty p(a) = Z oi(e) and Ng,p(a) = [[ oi(a)

i=1

and call these respectively the trace and norm of o in E over F. Show:



(a) TE/F(OZ) er, NE/F(Oé) eF.

(b) Tgyp is an F-linear map of the vector space E over F.

(c) Ng/F is a group homomorphism from the group £* = E\ {0} to the group F* = F'\ {0}.
)

(d) If G(E/F) is a cyclic group generated by o, then Ng,p(a) = 1 if and only if there exists b € E such
that a = (o(b))~tb. (Hint: Generalize Lemma 2.4 (Lemma 15.3 in our notes).)

Solution.
(a) Recall that for any group G and any g € G, the map
A :G—G
hs Ag(h) = gh
is a bijection. Therefore, for every o; € Gal(E/F), we have that
{o1,09,...,0,} = Gal(E/F) = {0j01,009,...,0;0,} =.
Then for every o; € Gal(E/F) we have

(TE/F (Zm > :Zojcr,;(oz):Zoi(a):TE/F(oz).

Since o is arbitrary, it follows that Tg/p(a) € Egai(g/r) = F, where the last equality follows by the
FTGT(1) since F C F is Galois. Similarly, we have

(NE/F _U] (HJ'L ) :HUjUi(Oé)ZHUi(a)ZNE/F(a),

and so Ng/p(a) € Egaie/ry = F.

(b) Let o, 8 € FE and f,g € F. Then for every o; € Gal(E/F) we have o;(f) = f and 0;(g) = g. Using
this we compute

Tp/p(fa+98) =Y oifa+gh)
i=1

=> (oi(f)oi(e) + oi(9)o:(B))

i=1

= (foi(a) + goi(B))

=1

= fZUi(a) + gzai(ﬁ)

S

= fTe/r(a) +9Te/r(B),

which shows that Tg/p : E — F' is an F-linear map.

(c) Let @ € E. Then Ng,p(a) = 0 implies that [] oy(a) = 0 and so o;(a) = 0 for some o; € Gal(E/F).
i=1
Since o; is a ring morphism between fields, it follows that o = 0. Since Ng,p is a map from E to F'
by part (a), it follows that Ng,p : E* — F*. Then for every a, 8 € E we have

Ng/p(aB) = Hm (aB) = Hdi(a) i HUz H B) = Ng/r(a)Ng/r(B),

which shows that Ng,r is a group homomorphism.



(d) Let o € E. We may write Gal(E/F) = {0° =idg,0,0%,...,0""1}. Assume first that a = (o(b))~1b for

some b € E and we show that Ng,r(a) = 1. We claim that for i > 0 we have o%(a) = o1 (b) 10" (b).
We use induction on 7. For 7 = 0 the claim is immediate. Assume that the claim is true for : — 1 and
we show it for 7. We have

o'(@) = o(c'"H(a)) = oo (b) ' (B) = 0T (B) o (),

as required. Therefore, we can compute

Ng/p(a) = Hai(a) =a*(0) "o (0)a’ () o (b) - " (B) " (B)o" T (B) TN ()

=c%(b) " La(b)a(b) "t (b)---b L™ L (B)o (D) Th =1,

where the last equality follows since the terms cancel each other.

For the other direction assume that Ng/p(a) = 1 and we show that there exists b € E such that
o = (o(b))~'b. Since N, r(a) =1, we have that

ao(@)o®(a)---o" Ha) = 1.

By Lemma 15.3 we obtain that there exists z € E* such that a = o(z)z~!. Setting b = 2~ we obtain
a=oc(b b= o(b)~1h, as required.

Problem 7. (Exam June 2014, Problem 4.)

(a)

(b)

Let FF C F(0) and F' C F(y) be two Galois extensions of the field F', where char(F) = 0. Show that
F C F(6,7) is a Galois extension of F'.

Assume Gal(F(0)/F) and Gal(F(v)/F) are both abelian groups. Show that Gal(F(6,~)/F)) is an
abelian group.

Solution.

(a)

We need to show that F' C F'(v,6) is finite, normal and separable.

Since F' C F(v) is finite, we have that v is algebraic over F. Hence « is algebraic over F(6). Then
F C F(0,~) is finitely-generated and 6 and + are algebraic over F. Hence F C F(6,) is a finite
extension.

We have that F' C F(v,0) is a normal extension by Problem 3 in Problem Set 3. Here is another way to
show this. Since F' C F'() is normal and finite, we have that F'(#) is the splitting field of a polynomial
f(z) € Flx] by Proposition 8.4. Similarly, F'(+) is the splitting field of a polynomial g(z) € F[z]. Let
h(z) = f(x)g(z) and we claim that its splitting field is F'(, ). Clearly h(x) factors into linear factors
in F(0,~) since f(z) factors into linear factors in F(f) and g(z) factors into linear factors in F'(v). Let
F C K C F(6,v) be an intermediate field and assume to a contradiction that h(z) factors into linear
factors in K. Then f(x) factors into linear factors in K and so F(f) C K. Similarly, F(y) C K. But
then F(0,v) C K, contradicting K C F(6,~). This shows that F'(0,~) is the splitting field of h(x) and
hence F' C F(0,~) is normal.

Since char F' = 0, we have that F' C F'(0,~) is a separable extension.
Define a map
U Gal(F(0,v)/F) — Gal(F(0)/F) x Gal(F(v)/F)
o (U|F(9)7 O'|F(’Y)).

We claim that o is well defined. That is, we need to show that U’F(e) € Gal(F(0)/F) and 0|F(7) €
Gal(F(vy)/F). We only show the first claim as the other is similar. Since

(0’F(9)> ’F = O—}F =idp,



we only need to show that U’F(e) : F(0) — F(0) is a field isomorphism. Let p(z) € F[z] be the minimal
polynomial of # and assume that deg(p(z)) = d. Then

0=o(p(0)) = p(a(0))

implies that o (@) is a root of p(z). By Theorem 8.5 and since F' C F(6) is a normal extension, we have
that all roots of p(z) are in F(#). Hence o(6) € F(). Since {1,6,...,0971} is a basis of F(6) over F,
we have that if ag + a1 + - + ag_10%"! € F(0) with a; € F, then

O'((ZQ =+ (ng + -+ ad,lﬂdfl) =ag + a10(0) 4+ 4 ad,la(ﬂ)dfl € F(G)

Hence o(F(6)) C F(#). Moreover, similarly we obtain that o?(6) is a root of p(x) for all i > 0 and that
a'(f) € F(0). Since p(x) has at most d roots, we obtain that o*(f) = ¢7(6) for some i < j. Since o is
injective, we have § = ¢7=() € o(F(0)). Since § € o(F(0)) and o(F(0)) C F(0), we conclude that
o(F(0)) = F(#). This shows that U is well-defined.

Now we claim that ¥ is a group homomorphism. Indeed, for any o, p € Gal(F(0,v)/F) we have that

(0o p)‘F(O) = U|F(9) © p’F(t‘))’

since p(F(0)) C F(0). Then
\I/(O'Op) - ((J o p)|F(0)’ (0 o p)|F('y)) - (U|F(9)OP|F(9)7 U|F(7)OP|F(7)) = (U|F(9)v U}F(,Y))O(P|F(9), p|F(”y))

and so VU is a group homomorphism.

Now we claim that W is injective. For this assume that ¥(o) = (idp(g),idp(,)) and we show that
o =1idp(,y). Since
(0|F(9)’O—|F(7) = V(o) = (idp(g),idp()),

we have O"F(e) =idp() and 0’|F(A/) = idp(y). A basis of F'(f) over F is given by {1,0,..., 64=1} and if
q(z) is the minimal polynomial of v over F(0) and deg(q(x)) = ¢, then a basis of F(6,v) over F(0) is
given by {1,7,...,7"71}. It follows that a basis of F(v,0) over F is given by the set

B={0y]0<i<d-1,0<j<t—1}.

Since
o(f) = 0’|F(9)(9) = idF(g)(G) =40

and similarly o(y) = «, we have that o acts as the identity on the F-basis B of F(6,v). Since by
assumption we have that o acts as the identity on F', we conclude that o = idp, )-

We have shown that ¥ is an injective group homomorphism. By assumption the groups Gal(F(6)/F)
and Gal(F(v)/F) are abelian, and so their product Gal(F'(6)/F) x Gal(F(y)/F) is abelian. Hence
U(Gal(F'(0,v)/F)) is abelian as it is the subgroup of an abelian group. Since ¥ is injective, we obtain
that Gal(F'(0,~)/F) =2 U (Gal(F(0,v))) is abelian as required.

Problem 8. (Exercise 18.2.3 in the book.) Let p be a prime and let F' be a field. Prove that 2 — b € F[x]
is reducible if and only if its splitting field is F' or F(w) according to whether char(F) = p or char(F') # p,
where w is a primitive p-th root of unity.

Solution. Let E be the splitting field of 2P — b over F. Let a € E be a root of 2P — b. We consider the
cases char(F') = p and char(F) # p separately.

Case char(F') = p. Then b = o and so 2 — b = 2P — a? = (x — )P since char(F) = p. Hence if E = F
we have that z — a € Flz] divides 2P — b and so zP — b is reducible. For the other direction assume that
aP — b € F[z] is reducible. Since 2P —b = (z — )" in E[z] and 2P — b is reducible over F, we conclude that
(z — a)" divides | 2? — b in F[z] for some 1 < r < p. Then (z — )" € F[z]. The constant term of (z — o)"
is —ra and so —ra € F[z]. Since 1 < r < p = char(F'), we conclude that o € F. Therefore F' contains all
the roots of 2P — b and hence E = F' is the splitting field of zP — b.



Case char(F) # p. Assume first that F = F(w) and we show that 2P — b is reducible. Assume to
a contradiction that x? — b is irreducible. Since F = F(w) is the splitting field of P — b, we have that
F(Yb) C F(w), since ¥b is a root of z” —b. On the other hand, since 2P — b is irreducible and monic and
{/b is a root of P — b, we have that 2P — b is the minimal polynomial of b over F. Then

[F(/b) : F] = deg(z? — b) = p.

On the other hand, since 2P — 1 = (z —1)(zP~' + -+ x4+ 1), we have that w is a root of 2P~ 1 + -+ +z + 1.
It follows that
[F(w): F] <deg(zP '+ - +2+1)<p—1.

Now, using F C F(¥/b) C F(w), we get
p—12 [F(w): F| = [F) : F/B|IP(YE) : F] > 1-p=p,

which is a contradiction. Hence xP — b is reducible.

Now assume that P — b is reducible and let w be a primitive p-th root of unity. We show that F = F(w).
Let o = {/b be a root of P — b. Then the roots of z” — b are a, wa, ..., wP 'a. In particular we have that
F(w) C E. Hence to show that £ = F(w) it is enough to show that z? — b splits in F(w). Since 2P — b is
reducible, there exists a polynomial f(z) € F[z] with deg(f(z)) =k > 1 and f(z) | (zF — b). Since

—1
P —b= pl_[(x —w'a),
i=0
it follows that there exist i1,...,4x € {0,1,...,p — 1} such that
flz) = (z —wa)(z —w?2a)--- (z — wa).
In particular the constant term of f(x) is

u = (_1)kakwi1+i2+---+ik

and we have u € F since f(x) € F[r]. Then wi it +ik = ? for some d € {0,...,p — 1}. Therefore

u = a*w? and so

uP = (WP = (aP)k(wP)? = bF.
Now let s,t € Z be such that ks + pt = 1. Then
b= bkerpt _ upsbpt — (usbt)p.

Since v € F and b € F we have that u®b’ € F. But then u*b’ is a root of P — b and so there exists a
j €{0,...,p— 1} such that u*d' = w/a. Hence w/a € F. Since F(w) contains all the roots of 2P — b, it
follows that zP — b splits in F'(w) as required.

Extra problems

The following problems may be a bit more challenging, in case you feel like you need something more.

Problem 9. (a) Show that for every n € Z, n > 1 we have

" —1= Hq)d(a:),

d|n
where ®4(z) is the d-th cyclotomic polynomial. Conclude that the constant term of ®,,(z) is +1.

(b) Let n € Z, n > 1. Let p > 2. Show that if p | ®,(cx), then p f cv.



()
(d)

()

Let n € Z,n > 1. Let € Z and let p be a prime such that ged(p,n) = 1. Show that p divides ®,,(«)
if and only if the order of @ € Z)' is n.

(Special case of Dirichlet’s theorem) Show that for any n > 1 there are infinitely many prime numbers
p such that n | (p— 1).

Let G be a finite abelian group. Show that there exists a Galois extension E of Q such that Gal(E/Q) =
G.

Solution.

(a)

For n =1 the claim is clear. Assume n > 2. We first show the equality of the two polynomials. Since
both polynomials " — 1 and [] ®4(z) are monic, it is enough to show that they have exactly the same
d|n
roots. Let a be a root of ™ — 1 and we show that « is a root of [[ ®4(x). Since « is a root of ™ — 1,
d|n
it follows that « is an n-th root of unity. Let d be the smallest positive integer such that a¢ = 1. Then
« is a primitive d-th root of unity, and so « is a root of ®4(x). For the other direction, let w be a root
of [T ®a(z). Then w is a root of ®4(x) for some d | n. In particular, w™ = 1 and so w is a root of
d|n

" — 1 as well.

We now show that the constant term of @, () is £1. We use induction on the number of prime factors
of n. If there is only one prime factor, then the claim follows by Example 14.10(2). For the induction
step, we have

2" =1 =[] ®a(x) = Pn(x) [ @al2).
d|n d|n,d<n

Ifd | n and d < n, then d has strictly less prime factors than n. Hence the terms ®4(z) with d | n
and d < n have constant coefficient +1 by induction assumption. If a is the constant coefficient of
®,,(x), then the constant coefficient of the right hand side in the above equality is +a and the constant
coefficient on the left hand side is —1. It follows that a = £1.

Assume to a contradiction that p ’ a. Since by part (a) we have that the constant term of @, («)
is 1, we conclude that p divides ®,(a) — 1. But then p | ®,(a) and p | (®,(e) — 1) implies that
p | ged(®, (), @ () — 1) = 1, which is a contradiction since p > 2.

Notice first that if p | @, (o) then @ € Z; by part (a). Now let [ be the order of @ € Z;. Set
f(z) =2"—1 and g(x) = ' — 1. We write f(x) for the polynomial f(z) as a polynomial in Z,[z] and
similarly for other polynomials. Then

Fa) = (@ = 1) = 2"

and since p does not divide n, we have that f(z)" is nonzero for x # 0. Since 0 is not a root of f(z),
it follows by Theorem 9.3 that f(x) has only simple roots. By part (a) we have that

f(@) = T ®ale) and g(z) = ] ®a(2). (1)

dln djl

Now assume first that @, (@) = 0. Hence @ is a root of f(x) and so @" = 1. Since the order of @ € Z
is I, we obtain that [ ’ n. On the other hand, since the order of @ € Z,; is [, we have that a =1 In
particular, @ is a root of g(z) € Zy[z]. By (1) we have that there exists some d’ | [ such that @ is a
root of @4 (x). Hence @ is a root of both ®,(x) and of ®4 (z) and moreover d’ | n since d’ | I and I | n.
Hence by (1) we have that if d’ < n, then @ is a double root of f(z). Since f(z) has only simple roots,
we obtain d’ = n. Then n = d’ <1 < n implies [ = n, as required.

Now assume that [ = n. Then @ is a root of f(z) and so by (1) we have that @ is a root of ®4 (z)
for some d’ | n. Set h(z) = 2¢ — 1. Then @ is also a root of h(z) = ] ®4(z). Hence a? = T, which

d|d’

implies that n | d’ since the order of @ is n. Since both d’ ‘ n and n | d’ hold, we conclude that n = d’.
Since @ is a root of g/ (z) = ®,,(x), we conclude that p | ().



(d) For n = 1 there is nothing to show. Let n > 2. Assume to a contradiction that there exist only finitely
many such primes, say pi,...,pg. Set P =p;---pi. Since ®,(z) is a monic polynomial, we have

lim ®,,(tnP) = oco.
t—o0

Hence there exists ¢t such that ®,,(tnP) > 1. Since ®,(tnP) > 1, there exists a prime number p such
that p | ®,(tnP). By part (b) we have that p{¢nP. In particular, we have that p{n. Then it follows
by part (c) that the order of ®(ntP) € Z is n. Since the order of Z is p— 1, we obtain that n ‘ p—1.
Hence p = p; for some j € {1,...,k}. But then p | tnP, which contradicts p { tnP.

(e) Since G is a finite abelian group, by the fundamental theorem of finite abelian groups (Theorem 8.3.1
in the book) we have that there exist positive integers my,--- ,my € Z such that

G XL, X+ X Loy,

By part (d) there exist distinct prime numbers p1,...,p; such that m; | (pi —1). Write k; = ”’T_l
Since p; is a prime number, the multiplicative group of units Z; is cyclic of order p; — 1. Hence

X o~
LY = L,y

We pick an isomorphism ¢; : Z). — Zp, 1. Since k; divides p; —1, it follows that there exists a subgroup
H; of Zp,_1 of order k; (Theorem 4.4.4. in the book). Then Z,,_1/H; is isomorphic to Zp,—1 = Zp,,.

i

Set V; = d)i_l(Hi). Then V; is a subgroup of Z,; and we have

Z;z/‘/l gzpifl/Hi mei‘ (2)

On the other hand, notice that for any rings Ry, Re we have that (R; x R2)* = R x R}. Hence we
have

Ly X oo XLy Ly X -+ Lp,) 2L s (3)

where the last isomorphism follows since all of the primes pq, ..., p; are distinct. Set m = p; - - p; and

pick an isomorphism t; : Z) x -+ x L) — Z),. Set U := (V1 x --- x V). Using (2) and (3) we have

G=Zpmy X X Ly,
= (23 Vi) % -+ x (23 /)
X (Zpy, - X Lyp) (Vi x - x V)
~7x/U.

Now let w be a primitive m-th root of unity. By Theorem 14.12 we know that Gal(Q(w)/Q) = Z),. We
pick an isomorphism y : Gal(Q(w)/Q) — ZX,. Set W := x~}(U). Since ZJ, is abelian, the subgroup
U < ZY, is anormal subgroup. Hence W < Gal(Q(w)/Q)) is a normal subgroup as well. Since Q C Q(w)
is a Galois extension, we may apply the FTGT. By the FTGT(2) we have that W = Gal(Q(w)/Q(w)w ).
By the FTGT(5) it follows that Q@ C Q(w)w is a normal extension and hence a Galois extension. We
set F = Q(w)w. Then by the FTGT(6) we have

as required.

Problem 10. Let FF C E be a Galois extension with Galois group G. As in Problem 6, for any a € F
define the norm of a in E over F via
Ng/p(a) = H o(a).

ceCG

(a) Find n € Z such that i € Q(w), where w € C is a primitive n-th root of unity.
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(b) Show that v/2 € Q(w) where w € C is a primitive 8-th root of unity.
(¢) Let p > 3 be a prime number. Let w € C be a primitive p-th root of unity.

(i) Show that N@(w)/Q(—l) =1, NQ(W)/Q(p) = pp_l, NQ(W)/Q(W) =1 and N@(w)/Q(l —w) =p.
(ii) Show that NQ(W)/Q((I);(M)) = pp72.
4 : -1
(iii) Show that the discriminant A = [I (W —w’)? satisfies A = (-1 ) 2 pP2.
1<i<j<p—1

(iv) Show that if p =1 mod 4, then \/p € Q(w), while if p =3 mod 4, then i\/p € Q(w).
(d) Let n,m > 1. Let w,, € C be a primitive n-th root of unity and w,, € C be a primitive m-th root of

unity. Let [ = lem(n,m) and let w; € C be a primitive I-th root of unity. Show that Q(wy, wm) = Q(w;).

(e) Let k € Z be an integer. Show that there exists an n € Z, n > 1 such that vk € Q(w,,) where w, is a
primitive n-th root of unity.

Solution.

(a) Notice that i* = 1. Hence i is a primitive 4-th root of unity and hence i € Q(i).

(b) We have that(,u:ezéer % In particular we have
w? e%i:cosg—kising:i.
Then i 1 . . 1 2
w:elzcosgﬂsing:ﬂHQ:ﬂ( ;z) :\/5< +2w )
Hence ”
V2= €Q),

as required.

(c) Recall that the set {w® | 1 < i < p— 1} is the set of all primitive p-th roots of unity. Moreover, by
Theorem 14.2 we have that Gal(Q(w)/Q) = {o; | 1 <i < p — 1} where 0;(w) = w'.

(i) We have
Nowyo(-1) = [[ os(=1) = [T(-1) = (=1 ~* =1,

since p is odd. Similarly we have

p—1
No(w)/o(Pp HUz HPZPP_1~
i=1
Moreover we compute

p(p 1)

N@(w /Q H 0’1 Hw = wz - =1.

Recall that by the definition of ®,(x) we have
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Notice that since p is prime, we have in particular by Example 14.10(2) that
by(z)=1+a+a®+ - +aPh

Hence we can compute
[Ja-w)=am) =141+ + 417" =p.

Therefore, we have

p—1 p—1

Nowya(l = ©) = [Joil =w) = [[(1 ~ o)) = [T(1 - &) = p.
=1 3

(ii) We have ®,(x) = 3;1:11. Therefore, we have (z — 1)®,(z) = 2P — 1. By taking derivatives we
obtain
Dy (z) + (x — 1)), (x) = paP .

Then evaluating at w we have
Dp(w) + (w — 1P (w) = pwP .

Notice that ®,(w) = 0. By applying Ng(.),q in both sides and using the fact that Ng.)/q is
multiplicative by Problem 6(c), we obtain

Now)/e(=1)No(w)/@) (1 — @) Now)/o(P, (@) = Now)/o(P) Now) /e@)?

Using part (c)(i) we have
1+ Now)/o(®p(w)) =pP~H 177
and so
No(u) /(P (w)) = p~%.

(i) We have

H (W — wi)? = H (W — w) (W' — wl) = H (—1)(w" — w?) (W —w")

1<i<j<p—1 1<i<j<p—1 1<i<j<p—1
(p—2)(p—1) . . . ) p—1 . )
=) 2 [ e e = (D7 [ -w).
1<i<j<p-1 i#j

Hence it is enough to show that [] (w® —w?) = p?~2. Since
i#]

we have
p—1 p—1 p—1
o) =[Je-w)+ [[@—w)+ -+ (z —w')
=1 i=1 i=
i£1 i£2 i#p—1

Then evaluating at wk for 1 < k < p—1 we have

p—1
o) (W) = J](w* —wh).
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Hence

p—1 p—1p—1
[T = [T [T - o) =[] - w)
k=1 k=1 7%;]1@ i#]

p—

Hence it is enough to show that [] ®/(w*) = pP~2. By part (c)(ii) and since ®/,(z) € Q[z] we
k=1

have

pP~? = Now) /o H or (P, (w H P (o (w H P (w

as required.

(iv) First notice that we have

Va= | Il w-wr= JI V-w@= ] @-w)eQw)

1<i<j<p-1 1<i<j<p-1 1<i<j<p-1

p—3
Moreover, notice that since p > 3 is odd, p 2 is an integer. In particular p 2 € Q(w).

Assume now that p =1 mod 4. Then % is even and so by (c)(iii) we have A = pP~2. Then

which is in Q(w) since both VA € Q(w) and P r5 € Q(w) hold.
Assume now that p = 3 mod 4. Then Z;* is odd and so by (c)(ili) we have A = —pP=2. In
particular, we have VA = i1/pP—2 and so

which similarly is in Q(w).

(d) We have

L i l

n
and so wy, is an I-th root of unity. Hence w,, € Q(w;). Similarly we obtain w,, € Q(w;) and so we have
Q(wn,wm) € Qwy).
For the other inclusion, by Bezout’s identity there exist x,y € Z such that xn+ym = ged(n, m). Using
the identity nm = lem(n, m) ged(n, m), we obtain

1 1 ged(n,m)  xn+ym
I lem(n,m) nm nm
27 27 27
We may choose w, =e n ,w,, =em and w; =e l . Then
2wy 2mwix y ) ym4zxn 271
£y 2T 2 ymrxn 27T
w}{wfn —=—e n e m =—e¢g i n+m = 627” nm =e |l = wy

is a primitive I-th root of unity. Hence w; = wlw? € Q(wn,wn ), and so Q(w;) € Q(wy, wy,), which
proves the claim.
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(e) Let us first assume that & > 0. If K = 0 or k = 1 the claim is clear. Assume that k& > 2. We use
induction on the number M of prime factors of k. For the base case M = 1 we have that k = p is prime.
If p = 2, then we have that /p € Q(ws) by part (b). If p =1 mod 4, then we have that \/p € Q(w,)
by part (c)(iv). If p = 3 mod 4, then we have that i\/p € Q(w,) and so /p = —i*\/p € Q(wp, ).
Since i = wy is a primitive 4-th root of unity and since lem(4,p) = 4p, we have by part (d) that
Q(wp, 1) = Q(w4p). Hence in this case /p € Q(wsp) and so the base case is proved.

For the induction step assume that k& has M prime factors. Then & = Kp where K has M — 1 prime
factors and p is a prime number. By induction assumption we have that VK € Q(wy) for some N € Z
and also that /p € Q(wn-) for some N’ € Z. Then by part (d) we have

Vk=+Kp= \/I?ﬁ € Qwn,wn) = QWiem(n, N1,

which proves the induction step.

Finally assume that k¥ < 0. Then —k > 0 and so there exists an N € Z such that v/—k € Q(wn). Then
again by part (d) we have

Vk =ivV—k € Qli,wy) = Qws,wn) = QWiem(an)),

which completes the proof.
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