
Galois theory - Problem Set 5

To be solved on Monday 17.04

Problem 1. Let n ∈ Z, n ≥ 1. Show that the following hold.

(a) For every m ∈ Zn we have that the order of m is o(m) = n
gcd(m,n) . In particular, m ∈ Zn is a generator

of Zn if and only if gcd(m,n) = 1.

(b) The number of generators of the cyclic group Zn is ϕ(n).

(c) n =
∑
d|n

ϕ(d).

Solution.

(a) Recall that gcd(n,m) lcm(n,m) = nm. Then

n

gcd(n,m)
m ≡ lcm(n,m) ≡ 0 mod n,

and so o(m)
∣∣ n

gcd(n,m) . It is enough to show that n
gcd(n,m)

∣∣ o(m) too. We have that

o(m)m ≡ 0 mod n,

and so n
∣∣ o(m)m. Since n

∣∣ o(m)n, we obtain that n
∣∣ gcd(o(m)m, o(m)n). It follows that n

∣∣
o(m) gcd(n,m) or that n

gcd(n,m)

∣∣ o(m), as required.

(b) Since |Zn| = n is a cyclic group, an element m ∈ Zn is a generator if and only if o(m) = n. By part
(b) this is equivalent to gcd(m,n) = 1. Hence there are as many generators of Zn as elements m with
1 ≤ m ≤ n and gcd(m,n) = 1. Since there are precisely ϕ(n) such elements, the claim follows.

(c) Let d be a divisor of n. Recall that Zn has exactly one subgroup of order d, that is Hd = ⟨nd ⟩ (see
Theorem 4.4.4 in the book). In particular, we have Hd

∼= Zd. Now let x ∈ Zn be an element of order
d. Then ⟨x⟩ is a subgroup of Zn of order d and hence ⟨x⟩ = Hd and x is a generator of Hd. Since
x ∈ Zn was arbitrary, it follows that every element of order d in Zn is a generator of Hd

∼= Zd. Since
by part (b) we have that Zd has ϕ(d) generators, we conclude that there are exactly ϕ(d) elements of
order d in Zn. Since the order of any element in Zn divides |Zn| = n, we have

n = |Zn| =
∑
d|n

|{elements of order d in Zn}| =
∑
d|n

ϕ(d),

as required.

Problem 2. (Exam May 2013, Problem 1)

(a) Let E be the splitting field of f(x) = x14 − 1 over Q. Show that the Galois group G = Gal(E/Q) is
abelian.

(b) Let Ẽ be the splitting field of g(x) = x7 + 1 over Q. Show that the Galois group G̃ = Gal(Ẽ/Q) is
abelian.

1



Solution.

(a) By Theorem 14.12(1) we have that E = Q(ω) where ω is a primitive 14-th root of unity. By Theorem
14.12(4) we have G = Gal(Q(ω)/Q) ∼= Z×

14, which is an abelian group.

(b) We have that x14 − 1 = (x7 +1)(x7 − 1). Hence x7 +1 splits in E = Q(ω). It follows that the splitting
field Ẽ of x7 + 1 is a subfield of E. Since Ẽ is the splitting field of x7 + 1, the extension Q ⊆ Ẽ is
normal. Since Q ⊆ Ẽ ⊆ E, we obtain by the FTGT(6) that

G̃ = Gal(Ẽ/Q) ∼= Gal(E/Q)/Gal(E/Ẽ).

Therefore, G̃ is isomorphic to a quotient group of the abelian group G = Gal(E/Q). Since quotient
groups of abelian groups are abelian, it follows that G̃ is abelian.

Problem 3. (Exam May 2004, Problem 3) Let p be a prime. Let E be the splitting field of xp − 1 ∈ Q[x]
over Q.

(a) Prove that Gal(E/Q) is abelian of order p− 1.

(b) Let ω = e
2πi
31 . Prove that there exists a subfield F of C such that [F (ω) : F ] = 5.

Solution.

(a) Let f(x) = xp − 1 and ω = e
2πi
p . Then ω is a primitive p-th root of unity and {ωi | 1 ≤ i ≤}

are the roots of xp − 1. Hence E = Q(ω). Since the minimal polynomial of ω over Q is Φp(x) =
1 + x+ · · ·+ xp−1, it follows that [Q(ω) : Q] = p− 1 and {1, ω, . . . , ωp−2} is a Q-basis of E. Then an
element σ ∈ Gal(Q(ω)/Q) is determined completely by its value σ(ω). Since Φp(σ(ω)) = σ(Φp(ω)) = 0,
we have that σ(ω) is a root of Φp(x). Hence σ(ω) = ωi with 1 ≤ i ≤ p− 1. Therefore

Gal(Q(ω)/Q) = {σi : Q(ω) → Q(ω) | 1 ≤ i ≤ p− 1, σi(ω) = ωi, and σi
∣∣
Q = idQ}

Then the map

Ψ : Z×
p → Gal(Q(ω)/Q)

i 7→ σi

is well-defined and is clearly injective. Since both sets have p−1 elements, Ψ is also bijective. Moreover
we claim that Ψ is a group homomorphism. Indeed, for i, j ∈ Z×

p we have

σij(ω) = ωij = σi ◦ σj(ω).

Hence
Ψ(ij) = σij = σi ◦ σj = Ψ(i) ◦Ψ(j).

Hence Gal(E/Q) is isomorphic to Z×
p which is an abelian group of order p− 1.

(b) Consider the subgroup {1, 2, 4, 8, 16} of Z×
31. By the map Ψ in part (a) it corresponds to the subgroup

H = {σ1, σ2, σ4, σ8, σ16} of Gal(Q(ω)/Q). By the FTGT the field EH satisfies

[Q(ω) : EH ] = |Gal(Q(ω)/EH)| = |H| = 5.

Since Q ⊆ EH ⊆ Q(ω) we have Q(ω) ⊆ EH(ω) ⊆ Q(ω) and so EH(ω) = Q(ω). Therefore, by setting
F = EH we have

[F (ω) : F ] = [EH(ω) : EH ] = [Q(ω) : EH ] = 5,

as required.
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Problem 4. (Exam May 2009, Problem 5.) Let F ⊆ K be a Galois extension such that G(K/F ) is cyclic
of order n and let σ be a generator for G(K/F ). Assume that F contains a primitive n-th root ω of unity.
Let α ∈ K \ F and let (ω, α) ̸= 0 be the Lagrange resolvent defined by

(ω, α) = α+ ωσ(α) + · · ·+ ωn−1σn−1(α).

(a) Show that a = α+ σ(α) + · · ·+ σn−1(α) is an element in F .

(b) Show that K = F ((ω, α)).

(c) Let b = (ω, α)n. Show that b ∈ F and that K is the splitting field of xn − b ∈ F [x] over F .

(d) Give an argument why xn − b is an irreducible polynomial over F .

Solution.

(a) Since G(K/F ) is cyclic of order n and σ ∈ G(K/F ) is a generator, we have that σn = idK . Hence

σ(a) = σ(α+ σ(α) + · · ·+ σn−2(α) + σn−1(α))

= σ(α) + σ2(α) + · · ·+ σn−1(α) + σn(α)

= σ(α) + σ2(α) + · · ·+ σn−1(α) + α = a.

Hence σ(a) = a. It follows that σi(a) = a for all 1 ≤ i ≤ n. Since ⟨σ⟩ = G(K/F ), it follows that
τ(a) = a for any τ ∈ G(K/F ). Hence a ∈ EG(K/F ) = F , where the last equality follows by the
FTGT(1).

(b) Set H = G(K/F ((ω, α))). Since F ⊆ F ((ω, α)) ⊆ K, we have that H < G(K/F ) = ⟨σ⟩. Hence there
exists I ⊆ {1, . . . , n} such that H = {σi | i ∈ I}. Since σ

∣∣
F
= idF and since ω ∈ F , we have σ(ω) = ω.

Then we compute

σ((ω, α)) = σ(α) + σ(ω)σ2(α) + · · ·+ σ(ωn−1)σn(α) = σ(α) + ωσ2(α) + · · ·+ ωn−1α = ωn−1(ω, α),

where the last equality follows since ωn = 1. Therefore, for i ∈ I we have σi ∈ H and so

(ω, α) = σi((ω, α)) = (ωn−1)i(ω, α).

We obtain that (ωn−1)i = 1 for all i ∈ I. Equivalently, we have that n
∣∣ i(n− 1) since ω has order n.

Since gcd(n − 1, n) = 1, we have that n
∣∣ i. Since 1 ≤ i ≤ n we conclude that i = n. Hence I = {n}

and so H = {σn} = {idK}. But then by the FTGT(3) we have

[K : F ((ω, α))] = |G(K/F ((ω, α)))| = |H| = 1,

and so F ((ω, α)) = K.

(c) We compute

σ(b) = σ((ω, α)n) = (σ((ω, α)))n = (ωn−1(ω, α))n = ω(n−1)n(ω, α)n = 1 · b = b.

Therefore, σi(b) = b for all i ≥ 1. Since σ generates G(K/F ), it follows that τ(b) = b for all τ ∈
G(K/F ). Hence b ∈ EG(K/F ) = F , where the last equality follows by the FTGT(1).

The roots of xn − b are (ω, α), ω(ω, α), · · · , ωn(ω, α). By part (b) we have that they all belong to K.
Hence xn − b factors into linear factors in K. Moreover, assume to a contradiction that F ⊆ X ⊊ K
is an intermediate field and that xn − b factors into linear factors in X. Then (ω, α) ∈ X and so
K = F ((ω, α)) ⊆ X ⊊ K is a contradiction. Hence xn − b does not factor into linear factors in any
strict subfield of K and so K is the splitting field of xn − b.
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(d) Since F ⊆ K is a Galois extension, and since K = F ((ω, α)) by part (b), we have that F ⊆ F ((ω, α))
is Galois. In particular, F ⊆ F ((ω, α)) is finite and has degree equal to the degree of the minimal
polynomial of (ω, α). Assume to a contradiction that xn − b is not irreducible. Since (ω, α) is a root
of xn − b, this implies that there exists an irreducible monic polynomial g(x) with (ω, α) as a root and
deg(g(x)) < deg(xn − b) = n. By the FTGT(3) we have

n > deg(g(x)) = [F ((ω, α)) : F ] = [K : F ] = |G(K/F )| = n,

which is a contradiction. Hence xn − b is irreducible.

Problem 5. (Exam June 2014, Problem 2.) Let F ⊆ E where F = GF(53) and E = GF(524). Describe
the Galois group G = Gal(E/F ) and list the fields K such that F ⊆ K ⊆ E.

Solution. By Theorem 10.8 and uniqueness of finite fields we have [GF(524) : GF(53)] = 24
3 = 8. Another

way to see this is to use the tower of field extensions GF(5) ⊆ GF(53) ⊆ GF(524). This gives

[GF(524) : GF(5)] = [GF(524) : GF(53)] · [GF(53) : GF(5)].

Since [GF(pn) : GF(p)] = n, we conclude that

24 = [GF(524) : GF(53)] · 3

and so [GF(524) : GF(53)] = 8. By Theorem 10.8 we also have that GF(524) is the splitting field of x5
24 − x

over GF(53) (the way to see this is to notice that every element of GF(524) is a root of x5
24 − x, and since

x5
24 −x can have at most 524 roots, it follows that GF(524) is the smallest field which contains all its roots).

Hence the extension GF(53) ⊆ GF(524) is normal. Since it is also finite of degree 8 and separable because
GF(53) is a perfect field (as it is finite), we conclude that GF(53) ⊆ GF(524) is a Galois extension. By the
FTGT(3) we obtain that

|G| = |Gal(GF(524)/GF(53))| = [GF(524) : GF(53)] = 8.

By Example 15.2(2) we have that G is a cyclic group as it is the Galois group of an extension of a finite
field. Hence G ∼= Z8. The subgroups of Z8 are

{0} < {0, 4} < {0, 2, 4, 6} < Z8.

By the FTGT these subgroups H correspond to intermediate fields between F and E via the map H 7→ EH .
We have

EZ8
= EG = EGal(E/F ) = F = GF(53),

and
E{0} = EidE

= E = GF(524).

For the subgroup H1 = {0, 4}, we have by the FTGT(2) and (3) that

2 = |H1| = |Gal(E/EH1)| = [E : EH1 ].

Hence if EH1
= GF(5m), then 2 = [E : EH1

] = 24
m . Therefore, EH1

= GF(512). Similarly, if H2 = {0, 2, 4, 6},
then EH2

= GF(56). Therefore we obtain the tower of subfields

F = GF(53) ⊆ GF(56) ⊆ GF(512) ⊆ GF(524) = E.

Problem 6. (Exercise 18.2.4 in the book.) Let E be a finite separable normal extension over F and let
G(E/F ) = {σ1 = 1, σ2, . . . , σn}. If α ∈ E we define

TE/F (α) =

n∑
i=1

σi(α) and NE/F (α) =

n∏
i=1

σi(α)

and call these respectively the trace and norm of α in E over F . Show:
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(a) TE/F (α) ∈ F , NE/F (α) ∈ F .

(b) TE/F is an F -linear map of the vector space E over F .

(c) NE/F is a group homomorphism from the group E∗ = E \ {0} to the group F ∗ = F \ {0}.

(d) If G(E/F ) is a cyclic group generated by σ, then NE/F (α) = 1 if and only if there exists b ∈ E such
that α = (σ(b))−1b. (Hint : Generalize Lemma 2.4 (Lemma 15.3 in our notes).)

Solution.

(a) Recall that for any group G and any g ∈ G, the map

λg : G→ G

h 7→ λg(h) = gh

is a bijection. Therefore, for every σj ∈ Gal(E/F ), we have that

{σ1, σ2, . . . , σn} = Gal(E/F ) = {σjσ1, σjσ2, . . . , σjσn} = .

Then for every σj ∈ Gal(E/F ) we have

σj(TE/F (α)) = σj

(
n∑

i=1

σi(α)

)
=

n∑
i=1

σjσi(α) =

n∑
i=1

σi(α) = TE/F (α).

Since σj is arbitrary, it follows that TE/F (α) ∈ EGal(E/F ) = F , where the last equality follows by the
FTGT(1) since F ⊆ E is Galois. Similarly, we have

σj(NE/F (α)) = σj

(
n∏

i=1

σi(α)

)
=

n∏
i=1

σjσi(α) =

n∏
i=1

σi(α) = NE/F (α),

and so NE/F (α) ∈ EGal(E/F ) = F .

(b) Let α, β ∈ E and f, g ∈ F . Then for every σi ∈ Gal(E/F ) we have σi(f) = f and σi(g) = g. Using
this we compute

TE/F (fα+ gβ) =

n∑
i=1

σi(fα+ gβ)

=

n∑
i=1

(σi(f)σi(α) + σi(g)σi(β))

=

n∑
i=1

(fσi(α) + gσi(β))

= f

n∑
i=1

σi(α) + g

n∑
i=1

σi(β)

= fTE/F (α) + gTE/F (β),

which shows that TE/F : E → F is an F -linear map.

(c) Let α ∈ E. Then NE/F (α) = 0 implies that
n∏

i=1

σi(α) = 0 and so σi(α) = 0 for some σi ∈ Gal(E/F ).

Since σi is a ring morphism between fields, it follows that α = 0. Since NE/F is a map from E to F
by part (a), it follows that NE/F : E∗ → F ∗. Then for every α, β ∈ E we have

NE/F (αβ) =

n∏
i=1

σi(αβ) =

n∏
i=1

σi(α)σi(β) =

n∏
i=1

σi(α)

n∏
i=1

σi(β) = NE/F (α)NE/F (β),

which shows that NE/F is a group homomorphism.
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(d) Let α ∈ E. We may write Gal(E/F ) = {σ0 = idE , σ, σ
2, . . . , σn−1}. Assume first that α = (σ(b))−1b for

some b ∈ E and we show that NE/F (α) = 1. We claim that for i ≥ 0 we have σi(α) = σi+1(b)−1σi(b).
We use induction on i. For i = 0 the claim is immediate. Assume that the claim is true for i− 1 and
we show it for i. We have

σi(α) = σ(σi−1(α)) = σ(σi(b)−1σi−1(b)) = σi+1(b)−1σi(b),

as required. Therefore, we can compute

NE/F (α) =

n∏
i=1

σi(α) = σ2(b)−1σ(b)σ3(b)−1σ2(b) · · ·σn(b)−1σn−1(b)σn+1(b)−1σn(b)

= σ2(b)−1σ(b)σ3(b)−1σ2(b) · · · b−1σn−1(b)σ(b)−1b = 1,

where the last equality follows since the terms cancel each other.

For the other direction assume that NE/F (α) = 1 and we show that there exists b ∈ E such that
α = (σ(b))−1b. Since NE/F (α) = 1, we have that

ασ(α)σ2(α) · · ·σn−1(α) = 1.

By Lemma 15.3 we obtain that there exists z ∈ E∗ such that α = σ(z)z−1. Setting b = z−1 we obtain
α = σ(b−1)b = σ(b)−1b, as required.

Problem 7. (Exam June 2014, Problem 4.)

(a) Let F ⊆ F (θ) and F ⊆ F (γ) be two Galois extensions of the field F , where char(F ) = 0. Show that
F ⊆ F (θ, γ) is a Galois extension of F .

(b) Assume Gal(F (θ)/F ) and Gal(F (γ)/F ) are both abelian groups. Show that Gal(F (θ, γ)/F )) is an
abelian group.

Solution.

(a) We need to show that F ⊆ F (γ, θ) is finite, normal and separable.

Since F ⊆ F (γ) is finite, we have that γ is algebraic over F . Hence γ is algebraic over F (θ). Then
F ⊆ F (θ, γ) is finitely-generated and θ and γ are algebraic over F . Hence F ⊆ F (θ, γ) is a finite
extension.

We have that F ⊆ F (γ, θ) is a normal extension by Problem 3 in Problem Set 3. Here is another way to
show this. Since F ⊆ F (θ) is normal and finite, we have that F (θ) is the splitting field of a polynomial
f(x) ∈ F [x] by Proposition 8.4. Similarly, F (γ) is the splitting field of a polynomial g(x) ∈ F [x]. Let
h(x) = f(x)g(x) and we claim that its splitting field is F (θ, γ). Clearly h(x) factors into linear factors
in F (θ, γ) since f(x) factors into linear factors in F (θ) and g(x) factors into linear factors in F (γ). Let
F ⊆ K ⊊ F (θ, γ) be an intermediate field and assume to a contradiction that h(x) factors into linear
factors in K. Then f(x) factors into linear factors in K and so F (θ) ⊆ K. Similarly, F (γ) ⊆ K. But
then F (θ, γ) ⊆ K, contradicting K ⊊ F (θ, γ). This shows that F (θ, γ) is the splitting field of h(x) and
hence F ⊆ F (θ, γ) is normal.

Since charF = 0, we have that F ⊆ F (θ, γ) is a separable extension.

(b) Define a map

Ψ : Gal(F (θ, γ)/F ) → Gal(F (θ)/F )×Gal(F (γ)/F )

σ 7→ (σ
∣∣
F (θ)

, σ
∣∣
F (γ)

).

We claim that σ is well defined. That is, we need to show that σ
∣∣
F (θ)

∈ Gal(F (θ)/F ) and σ
∣∣
F (γ)

∈
Gal(F (γ)/F ). We only show the first claim as the other is similar. Since(

σ
∣∣
F (θ)

) ∣∣∣
F
= σ

∣∣
F
= idF ,
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we only need to show that σ
∣∣
F (θ)

: F (θ) → F (θ) is a field isomorphism. Let p(x) ∈ F [x] be the minimal

polynomial of θ and assume that deg(p(x)) = d. Then

0 = σ(p(θ)) = p(σ(θ))

implies that σ(θ) is a root of p(x). By Theorem 8.5 and since F ⊆ F (θ) is a normal extension, we have
that all roots of p(x) are in F (θ). Hence σ(θ) ∈ F (θ). Since {1, θ, . . . , θd−1} is a basis of F (θ) over F ,
we have that if a0 + a1θ + · · ·+ ad−1θ

d−1 ∈ F (θ) with ai ∈ F , then

σ(a0 + a1θ + · · ·+ ad−1θ
d−1) = a0 + a1σ(θ) + · · ·+ ad−1σ(θ)

d−1 ∈ F (θ).

Hence σ(F (θ)) ⊆ F (θ). Moreover, similarly we obtain that σi(θ) is a root of p(x) for all i ≥ 0 and that
σi(θ) ∈ F (θ). Since p(x) has at most d roots, we obtain that σi(θ) = σj(θ) for some i < j. Since σ is
injective, we have θ = σj−i(θ) ∈ σ(F (θ)). Since θ ∈ σ(F (θ)) and σ(F (θ)) ⊆ F (θ), we conclude that
σ(F (θ)) = F (θ). This shows that Ψ is well-defined.

Now we claim that Ψ is a group homomorphism. Indeed, for any σ, ρ ∈ Gal(F (θ, γ)/F ) we have that

(σ ◦ ρ)
∣∣
F (θ)

= σ
∣∣
F (θ)

◦ ρ
∣∣
F (θ)

,

since ρ(F (θ)) ⊆ F (θ). Then

Ψ(σ◦ρ) = ((σ ◦ ρ)
∣∣
F (θ)

, (σ ◦ ρ)
∣∣
F (γ)

) = (σ
∣∣
F (θ)

◦ρ
∣∣
F (θ)

, σ
∣∣
F (γ)

◦ρ
∣∣
F (γ)

) = (σ
∣∣
F (θ)

, σ
∣∣
F (γ)

)◦(ρ
∣∣
F (θ)

, ρ
∣∣
F (γ)

)

and so Ψ is a group homomorphism.

Now we claim that Ψ is injective. For this assume that Ψ(σ) = (idF (θ), idF (γ)) and we show that
σ = idF (θ,γ). Since

(σ
∣∣
F (θ)

, σ
∣∣
F (γ)

= Ψ(σ) = (idF (θ), idF (γ)),

we have σ
∣∣
F (θ)

= idF (θ) and σ
∣∣
F (γ)

= idF (γ). A basis of F (θ) over F is given by {1, θ, . . . , θd−1} and if

q(x) is the minimal polynomial of γ over F (θ) and deg(q(x)) = t, then a basis of F (θ, γ) over F (θ) is
given by {1, γ, . . . , γt−1}. It follows that a basis of F (γ, θ) over F is given by the set

B = {θiγj | 0 ≤ i ≤ d− 1, 0 ≤ j ≤ t− 1}.

Since
σ(θ) = σ

∣∣
F (θ)

(θ) = idF (θ)(θ) = θ

and similarly σ(γ) = γ, we have that σ acts as the identity on the F -basis B of F (θ, γ). Since by
assumption we have that σ acts as the identity on F , we conclude that σ = idF (θ,γ).

We have shown that Ψ is an injective group homomorphism. By assumption the groups Gal(F (θ)/F )
and Gal(F (γ)/F ) are abelian, and so their product Gal(F (θ)/F ) × Gal(F (γ)/F ) is abelian. Hence
Ψ(Gal(F (θ, γ)/F )) is abelian as it is the subgroup of an abelian group. Since Ψ is injective, we obtain
that Gal(F (θ, γ)/F ) ∼= Ψ(Gal(F (θ, γ))) is abelian as required.

Problem 8. (Exercise 18.2.3 in the book.) Let p be a prime and let F be a field. Prove that xp − b ∈ F [x]
is reducible if and only if its splitting field is F or F (ω) according to whether char(F ) = p or char(F ) ̸= p,
where ω is a primitive p-th root of unity.

Solution. Let E be the splitting field of xp − b over F . Let α ∈ E be a root of xp − b. We consider the
cases char(F ) = p and char(F ) ̸= p separately.

Case char(F ) = p. Then b = αp and so xp − b = xp − αp = (x− α)p since char(F ) = p. Hence if E = F
we have that x − α ∈ F [x] divides xp − b and so xp − b is reducible. For the other direction assume that
xp − b ∈ F [x] is reducible. Since xp − b = (x− α)r in E[x] and xp − b is reducible over F , we conclude that
(x− α)r divides

∣∣ xp − b in F [x] for some 1 ≤ r < p. Then (x− α)r ∈ F [x]. The constant term of (x− α)r

is −rα and so −rα ∈ F [x]. Since 1 ≤ r < p = char(F ), we conclude that α ∈ F . Therefore F contains all
the roots of xp − b and hence E = F is the splitting field of xp − b.
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Case char(F ) ̸= p. Assume first that E = F (ω) and we show that xp − b is reducible. Assume to
a contradiction that xp − b is irreducible. Since E = F (ω) is the splitting field of xp − b, we have that
F ( p

√
b) ⊆ F (ω), since p

√
b is a root of xp − b. On the other hand, since xp − b is irreducible and monic and

p
√
b is a root of xp − b, we have that xp − b is the minimal polynomial of b over F . Then

[F (
p
√
b) : F ] = deg(xp − b) = p.

On the other hand, since xp − 1 = (x− 1)(xp−1 + · · ·+ x+1), we have that ω is a root of xp−1 + · · ·+ x+1.
It follows that

[F (ω) : F ] ≤ deg(xp−1 + · · ·+ x+ 1) ≤ p− 1.

Now, using F ⊆ F ( p
√
b) ⊆ F (ω), we get

p− 1 ≥ [F (ω) : F ] = [F (ω) : F (
p
√
b)][F (

p
√
b) : F ] ≥ 1 · p = p,

which is a contradiction. Hence xp − b is reducible.
Now assume that xp− b is reducible and let ω be a primitive p-th root of unity. We show that E = F (ω).

Let α = p
√
b be a root of xp − b. Then the roots of xp − b are α, ωα, . . . , ωp−1α. In particular we have that

F (ω) ⊆ E. Hence to show that E = F (ω) it is enough to show that xp − b splits in F (ω). Since xp − b is
reducible, there exists a polynomial f(x) ∈ F [x] with deg(f(x)) = k ≥ 1 and f(x)

∣∣ (xp − b). Since

xp − b =

p−1∏
i=0

(x− ωiα),

it follows that there exist i1, . . . , ik ∈ {0, 1, . . . , p− 1} such that

f(x) = (x− ωi1α)(x− ωi2α) · · · (x− ωikα).

In particular the constant term of f(x) is

u = (−1)kαkωi1+i2+···+ik

and we have u ∈ F since f(x) ∈ F [x]. Then ωi1+i2+···+ik = ωd for some d ∈ {0, . . . , p − 1}. Therefore
u = αkωd and so

up = (αkωd)p = (αp)k(ωp)d = bk.

Now let s, t ∈ Z be such that ks+ pt = 1. Then

b = bks+pt = upsbpt = (usbt)p.

Since u ∈ F and b ∈ F we have that usbt ∈ F . But then usbt is a root of xp − b and so there exists a
j ∈ {0, . . . , p − 1} such that usbt = ωjα. Hence ωjα ∈ F . Since F (ω) contains all the roots of xp − b, it
follows that xp − b splits in F (ω) as required.

Extra problems

The following problems may be a bit more challenging, in case you feel like you need something more.

Problem 9. (a) Show that for every n ∈ Z, n ≥ 1 we have

xn − 1 =
∏
d|n

Φd(x),

where Φd(x) is the d-th cyclotomic polynomial. Conclude that the constant term of Φn(x) is ±1.

(b) Let n ∈ Z, n ≥ 1. Let p ≥ 2. Show that if p
∣∣ Φn(α), then p ∤ α.

8



(c) Let n ∈ Z, n ≥ 1. Let α ∈ Z and let p be a prime such that gcd(p, n) = 1. Show that p divides Φn(α)
if and only if the order of α ∈ Z×

p is n.

(d) (Special case of Dirichlet’s theorem) Show that for any n ≥ 1 there are infinitely many prime numbers
p such that n

∣∣ (p− 1).

(e) Let G be a finite abelian group. Show that there exists a Galois extension E of Q such that Gal(E/Q) ∼=
G.

Solution.

(a) For n = 1 the claim is clear. Assume n ≥ 2. We first show the equality of the two polynomials. Since
both polynomials xn−1 and

∏
d|n

Φd(x) are monic, it is enough to show that they have exactly the same

roots. Let α be a root of xn − 1 and we show that α is a root of
∏
d|n

Φd(x). Since α is a root of xn − 1,

it follows that α is an n-th root of unity. Let d be the smallest positive integer such that αd = 1. Then
α is a primitive d-th root of unity, and so α is a root of Φd(x). For the other direction, let ω be a root
of
∏
d|n

Φd(x). Then ω is a root of Φd(x) for some d
∣∣ n. In particular, ωn = 1 and so ω is a root of

xn − 1 as well.

We now show that the constant term of Φn(x) is ±1. We use induction on the number of prime factors
of n. If there is only one prime factor, then the claim follows by Example 14.10(2). For the induction
step, we have

xn − 1 =
∏
d|n

Φd(x) = Φn(x)
∏

d|n,d<n

Φd(x).

If d
∣∣ n and d < n, then d has strictly less prime factors than n. Hence the terms Φd(x) with d

∣∣ n
and d < n have constant coefficient ±1 by induction assumption. If a is the constant coefficient of
Φn(x), then the constant coefficient of the right hand side in the above equality is ±a and the constant
coefficient on the left hand side is −1. It follows that a = ±1.

(b) Assume to a contradiction that p
∣∣ α. Since by part (a) we have that the constant term of Φn(α)

is 1, we conclude that p divides Φn(α) − 1. But then p
∣∣ Φn(α) and p

∣∣ (Φn(α) − 1) implies that

p
∣∣ gcd(Φn(α),Φn(α)− 1) = 1, which is a contradiction since p ≥ 2.

(c) Notice first that if p
∣∣ Φn(α) then α ∈ Z×

p by part (a). Now let l be the order of α ∈ Z×
p . Set

f(x) = xn − 1 and g(x) = xl − 1. We write f(x) for the polynomial f(x) as a polynomial in Zp[x] and
similarly for other polynomials. Then

f(x)′ = (xn − 1)′ = nxn−1

and since p does not divide n, we have that f(x)′ is nonzero for x ̸= 0. Since 0 is not a root of f(x),
it follows by Theorem 9.3 that f(x) has only simple roots. By part (a) we have that

f(x) =
∏
d|n

Φd(x) and g(x) =
∏
d|l

Φd(x). (1)

Now assume first that Φn(α) = 0. Hence α is a root of f(x) and so αn = 1. Since the order of α ∈ Z×
p

is l, we obtain that l
∣∣ n. On the other hand, since the order of α ∈ Z×

p is l, we have that αl = 1. In

particular, α is a root of g(x) ∈ Zp[x]. By (1) we have that there exists some d′
∣∣ l such that α is a

root of Φd′(x). Hence α is a root of both Φn(x) and of Φd′(x) and moreover d′
∣∣ n since d′

∣∣ l and l ∣∣ n.
Hence by (1) we have that if d′ < n, then α is a double root of f(x). Since f(x) has only simple roots,
we obtain d′ = n. Then n = d′ ≤ l ≤ n implies l = n, as required.

Now assume that l = n. Then α is a root of f(x) and so by (1) we have that α is a root of Φd′(x)

for some d′
∣∣ n. Set h(x) = xd

′ − 1. Then α is also a root of h(x) =
∏
d|d′

Φd(x). Hence αd′
= 1, which

implies that n
∣∣ d′ since the order of α is n. Since both d′

∣∣ n and n
∣∣ d′ hold, we conclude that n = d′.

Since α is a root of Φd′(x) = Φn(x), we conclude that p
∣∣ Φn(α).

9



(d) For n = 1 there is nothing to show. Let n ≥ 2. Assume to a contradiction that there exist only finitely
many such primes, say p1, . . . , pk. Set P = p1 · · · pk. Since Φn(x) is a monic polynomial, we have

lim
t→∞

Φn(tnP ) = ∞.

Hence there exists t such that Φn(tnP ) > 1. Since Φn(tnP ) > 1, there exists a prime number p such
that p

∣∣ Φn(tnP ). By part (b) we have that p ∤ tnP . In particular, we have that p ∤ n. Then it follows

by part (c) that the order of Φ(ntP ) ∈ Z×
p is n. Since the order of Z×

p is p−1, we obtain that n
∣∣ p−1.

Hence p = pj for some j ∈ {1, . . . , k}. But then p
∣∣ tnP , which contradicts p ∤ tnP .

(e) Since G is a finite abelian group, by the fundamental theorem of finite abelian groups (Theorem 8.3.1
in the book) we have that there exist positive integers m1, · · · ,mk ∈ Z such that

G ∼= Zm1 × · · · × Zmt .

By part (d) there exist distinct prime numbers p1, . . . , pt such that mi

∣∣ (pi − 1). Write ki = pi−1
mi

.

Since pi is a prime number, the multiplicative group of units Z×
pi

is cyclic of order pi − 1. Hence

Z×
pi

∼= Zpi−1.

We pick an isomorphism ϕi : Z×
pi

→ Zpi−1. Since ki divides pi−1, it follows that there exists a subgroup
Hi of Zpi−1 of order ki (Theorem 4.4.4. in the book). Then Zpi−1/Hi is isomorphic to Zpi−1

ki

= Zmi .

Set Vi := ϕ−1
i (Hi). Then Vi is a subgroup of Z×

pi
and we have

Z×
pi
/Vi ∼= Zpi−1/Hi

∼= Zmi
. (2)

On the other hand, notice that for any rings R1, R2 we have that (R1 × R2)
× ∼= R×

1 × R×
2 . Hence we

have
Z×
p1

× · · · × Z×
pt

∼= (Zp1
× · · ·Zpt

)× ∼= Z×
p1···pt

, (3)

where the last isomorphism follows since all of the primes p1, . . . , pt are distinct. Set m = p1 · · · pt and
pick an isomorphism ψi : Z×

p1
× · · · × Z×

pt
→ Z×

m. Set U := ψ(V1 × · · · × Vt). Using (2) and (3) we have

G ∼= Zm1
× · · · × Zmt

∼= (Z×
p1
/V1)× · · · × (Z×

pt
/Vt)

∼= (Z×
p1

× · · · × Z×
pt
)/(V1 × · · · × Vt)

∼= Z×
m/U.

Now let ω be a primitive m-th root of unity. By Theorem 14.12 we know that Gal(Q(ω)/Q) ∼= Z×
m. We

pick an isomorphism χ : Gal(Q(ω)/Q) → Z×
m. Set W := χ−1(U). Since Z×

m is abelian, the subgroup
U < Z×

m is a normal subgroup. HenceW ◁ Gal(Q(ω)/Q)) is a normal subgroup as well. Since Q ⊆ Q(ω)
is a Galois extension, we may apply the FTGT. By the FTGT(2) we have thatW = Gal(Q(ω)/Q(ω)W ).
By the FTGT(5) it follows that Q ⊆ Q(ω)W is a normal extension and hence a Galois extension. We
set E = Q(ω)W . Then by the FTGT(6) we have

Gal(E/Q) = Gal(Q(ω)W /Q) ∼=
Gal(Q(ω)/Q)

Gal(Q(ω)/Q(ω)W )
∼=

Gal(Q(ω)/Q)

W
∼=

Z×
m

U
∼= G,

as required.

Problem 10. Let F ⊆ E be a Galois extension with Galois group G. As in Problem 6, for any α ∈ E
define the norm of α in E over F via

NE/F (α) =
∏
σ∈G

σ(α).

(a) Find n ∈ Z such that i ∈ Q(ω), where ω ∈ C is a primitive n-th root of unity.
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(b) Show that
√
2 ∈ Q(ω) where ω ∈ C is a primitive 8-th root of unity.

(c) Let p ≥ 3 be a prime number. Let ω ∈ C be a primitive p-th root of unity.

(i) Show that NQ(ω)/Q(−1) = 1, NQ(ω)/Q(p) = pp−1, NQ(ω)/Q(ω) = 1 and NQ(ω)/Q(1− ω) = p.

(ii) Show that NQ(ω)/Q(Φ
′
p(ω)) = pp−2.

(iii) Show that the discriminant ∆ :=
∏

1≤i<j≤p−1

(ωi − ωj)2 satisfies ∆ = (−1)
p−1
2 pp−2.

(iv) Show that if p ≡ 1 mod 4, then
√
p ∈ Q(ω), while if p ≡ 3 mod 4, then i

√
p ∈ Q(ω).

(d) Let n,m ≥ 1. Let ωn ∈ C be a primitive n-th root of unity and ωm ∈ C be a primitive m-th root of
unity. Let l = lcm(n,m) and let ωl ∈ C be a primitive l-th root of unity. Show that Q(ωn, ωm) = Q(ωl).

(e) Let k ∈ Z be an integer. Show that there exists an n ∈ Z, n ≥ 1 such that
√
k ∈ Q(ωn) where ωn is a

primitive n-th root of unity.

Solution.

(a) Notice that i4 = 1. Hence i is a primitive 4-th root of unity and hence i ∈ Q(i).

(b) We have that ω = e
2πi
8 = e

πi
4 . In particular we have

ω2 = e
πi
2 = cos π

2 + i sin π
2 = i.

Then

ω = e
πi
4 = cos π

4 + i sin π
4 =

1√
2
+ i

√
2

2
=

√
2

(
1 + i

2

)
=

√
2

(
1 + ω2

2

)
.

Hence √
2 =

2ω

1 + ω2
∈ Q(ω),

as required.

(c) Recall that the set {ωi | 1 ≤ i ≤ p − 1} is the set of all primitive p-th roots of unity. Moreover, by
Theorem 14.2 we have that Gal(Q(ω)/Q) = {σi | 1 ≤ i ≤ p− 1} where σi(ω) = ωi.

(i) We have

NQ(ω)/Q(−1) =

p−1∏
i=1

σi(−1) =

p−1∏
i=1

(−1) = (−1)p−1 = 1,

since p is odd. Similarly we have

NQ(ω)/Q(p) =

p−1∏
i=1

σi(p) =

p−1∏
i=1

p = pp−1.

Moreover we compute

NQ(ω)/Q(ω) =

p−1∏
i=1

σi(ω) =

p−1∏
i=1

ωi = ω
∑p−1

i=1 i = ω
p(p−1)

2 = 1.

Recall that by the definition of Φp(x) we have

Φp(x) =

p−1∏
i=1

(x− ωi).
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Notice that since p is prime, we have in particular by Example 14.10(2) that

Φp(x) = 1 + x+ x2 + · · ·+ xp−1.

Hence we can compute

p−1∏
i=1

(1− ωi) = Φp(1) = 1 + 1 + 12 + · · ·+ 1p−1 = p.

Therefore, we have

NQ(ω)/Q(1− ω) =

p−1∏
i=1

σi(1− ω) =

p−1∏
i=1

(1− σi(ω)) =

p−1∏
i=1

(1− ωi) = p.

(ii) We have Φp(x) = xp−1
x−1 . Therefore, we have (x − 1)Φp(x) = xp − 1. By taking derivatives we

obtain
Φp(x) + (x− 1)Φ′

p(x) = pxp−1.

Then evaluating at ω we have

Φp(ω) + (ω − 1)Φ′
p(ω) = pωp−1.

Notice that Φp(ω) = 0. By applying NQ(ω)/Q in both sides and using the fact that NQ(ω)/Q is
multiplicative by Problem 6(c), we obtain

NQ(ω)/Q(−1)NQ(ω)/Q)(1− ω)NQ(ω)/Q(Φ
′
p(ω)) = NQ(ω)/Q(p)NQ(ω)/Q(ω)

p−1.

Using part (c)(i) we have
1 · p ·NQ(ω)/Q(Φ

′
p(ω)) = pp−1 · 1p−1

and so
NQ(ω)/Q(Φ

′
p(ω)) = pp−2.

(iii) We have∏
1≤i<j≤p−1

(ωi − ωj)2 =
∏

1≤i<j≤p−1

(ωi − ωj)(ωi − ωj) =
∏

1≤i<j≤p−1

(−1)(ωi − ωj)(ωj − ωi)

= (−1)
(p−2)(p−1)

2
∏

1≤i<j≤p−1

(ωi − ωj)(ωj − ωi) = (−1)
p−1
2
∏
i̸=j

(ωi − ωj).

Hence it is enough to show that
∏
i̸=j

(ωi − ωj) = pp−2. Since

Φp(x) =

p−1∏
i=1

(x− ωi),

we have

Φ′
p(x) =

p−1∏
i=1
i ̸=1

(x− ωi) +

p−1∏
i=1
i ̸=2

(x− ωi) + · · ·+
p−1∏
i=1

i ̸=p−1

(x− ωi).

Then evaluating at ωk for 1 ≤ k ≤ p− 1 we have

Φ′
p(ω

k) =

p−1∏
i=1
i ̸=k

(ωk − ωi).
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Hence
p−1∏
k=1

Φ′
p(ω

k) =

p−1∏
k=1

p−1∏
i=1
i ̸=k

(ωk − ωi) =
∏
i ̸=j

(ωj − ωi)

Hence it is enough to show that
p−1∏
k=1

Φ′
p(ω

k) = pp−2. By part (c)(ii) and since Φ′
p(x) ∈ Q[x] we

have

pp−2 = NQ(ω)/Q(Φ
′
p(ω)) =

p−1∏
k=1

σk(Φ
′
p(ω)) =

p−1∏
k=1

Φ′
p(σk(ω)) =

p−1∏
k=1

Φ′
p(ω

k),

as required.

(iv) First notice that we have

√
∆ =

√ ∏
1≤i<j≤p−1

(ωi − ωj)2 =
∏

1≤i<j≤p−1

√
(ωi − ωj)2 =

∏
1≤i<j≤p−1

(ωi − ωj) ∈ Q(ω).

Moreover, notice that since p ≥ 3 is odd, p
p−3
2 is an integer. In particular p

p−3
2 ∈ Q(ω).

Assume now that p ≡ 1 mod 4. Then p−1
2 is even and so by (c)(iii) we have ∆ = pp−2. Then

√
p = p

1
2 =

p
p−2
2

p
p−3
2

=

√
∆

p
p−3
2

which is in Q(ω) since both
√
∆ ∈ Q(ω) and p

p−3
2 ∈ Q(ω) hold.

Assume now that p ≡ 3 mod 4. Then p−1
2 is odd and so by (c)(iii) we have ∆ = −pp−2. In

particular, we have
√
∆ = i

√
pp−2 and so

i
√
p = ip

1
2 =

ip
p−2
2

p
p−3
2

=

√
∆

p
p−3
2

,

which similarly is in Q(ω).

(d) We have

ωl
n = ω

n
l
n

n = (ωn
n)

l
n = 1

l
n = 1,

and so ωn is an l-th root of unity. Hence ωn ∈ Q(ωl). Similarly we obtain ωm ∈ Q(ωl) and so we have
Q(ωn, ωm) ⊆ Q(ωl).

For the other inclusion, by Bezout’s identity there exist x, y ∈ Z such that xn+ym = gcd(n,m). Using
the identity nm = lcm(n,m) gcd(n,m), we obtain

1

l
=

1

lcm(n,m)
=

gcd(n,m)

nm
=
xn+ ym

nm
.

We may choose ωn = e
2πi
n , ωm = e

2πi
m and ωl = e

2πi
l . Then

ωy
nω

x
m = e

2πiy
n e

2πix
m = e

2πi
( y
n+

x
m

)
= e2πi

ym+xn
nm = e

2πi
l = ωl

is a primitive l-th root of unity. Hence ωl = ωy
nω

x
m ∈ Q(ωn, ωm), and so Q(ωl) ⊆ Q(ωn, ωm), which

proves the claim.
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(e) Let us first assume that k ≥ 0. If k = 0 or k = 1 the claim is clear. Assume that k ≥ 2. We use
induction on the numberM of prime factors of k. For the base caseM = 1 we have that k = p is prime.
If p = 2, then we have that

√
p ∈ Q(ω8) by part (b). If p ≡ 1 mod 4, then we have that

√
p ∈ Q(ωp)

by part (c)(iv). If p ≡ 3 mod 4, then we have that i
√
p ∈ Q(ωp) and so

√
p = −i2√p ∈ Q(ωp, i).

Since i = ω4 is a primitive 4-th root of unity and since lcm(4, p) = 4p, we have by part (d) that
Q(ωp, i) = Q(ω4p). Hence in this case

√
p ∈ Q(ω4p) and so the base case is proved.

For the induction step assume that k has M prime factors. Then k = Kp where K has M − 1 prime
factors and p is a prime number. By induction assumption we have that

√
K ∈ Q(ωN ) for some N ∈ Z

and also that
√
p ∈ Q(ωN ′) for some N ′ ∈ Z. Then by part (d) we have

√
k =

√
Kp =

√
K
√
p ∈ Q(ωN , ωN ′) = Q(ωlcm(N,N ′)),

which proves the induction step.

Finally assume that k < 0. Then −k > 0 and so there exists an N ∈ Z such that
√
−k ∈ Q(ωN ). Then

again by part (d) we have

√
k = i

√
−k ∈ Q(i, ωN ) = Q(ω4, ωN ) = Q(ωlcm(4,N)),

which completes the proof.
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