Galois theory - Problem Set 5

To be solved on Monday 17.04

Problem 1. Let $n \in \mathbb{Z}, n \geq 1$. Show that the following hold.
(a) For every $m \in \mathbb{Z}_{n}$ we have that the order of m is $o(m)=\frac{n}{\operatorname{gcd}(m, n)}$. In particular, $m \in \mathbb{Z}_{n}$ is a generator of \mathbb{Z}_{n} if and only if $\operatorname{gcd}(m, n)=1$.
(b) The number of generators of the cyclic group \mathbb{Z}_{n} is $\phi(n)$.
(c) $n=\sum_{d \mid n} \phi(d)$.

Problem 2. (Exam May 2013, Problem 1)
(a) Let E be the splitting field of $f(x)=x^{14}-1$ over \mathbb{Q}. Show that the Galois group $G=\operatorname{Gal}(E / \mathbb{Q})$ is abelian.
(b) Let \tilde{E} be the splitting field of $g(x)=x^{7}+1$ over \mathbb{Q}. Show that the Galois group $\tilde{G}=\operatorname{Gal}(\tilde{E} / \mathbb{Q})$ is abelian.

Problem 3. (Exam May 2004, Problem 3) Let p be a prime. Let E be the splitting field of $x^{p}-1 \in \mathbb{Q}[x]$ over \mathbb{Q}.
(a) Prove that $\operatorname{Gal}(E / \mathbb{Q})$ is abelian of order $p-1$.
(b) Let $\omega=e^{\frac{2 \pi i}{31}}$. Prove that there exists a subfield F of \mathbb{C} such that $[F(\omega): F]=5$.

Problem 4. (Exam May 2009, Problem 5.) Let $F \subseteq K$ be a Galois extension such that $G(K / F)$ is cyclic of order n and let σ be a generator for $G(K / F)$. Assume that F contains a primitive n-th root ω of unity. Let $\alpha \in K \backslash F$ and let $(\omega, \alpha) \neq 0$ be the Lagrange resolvent defined by

$$
(\omega, \alpha)=\alpha+\omega \sigma(\alpha)+\cdots+\omega^{n-1} \sigma^{n-1}(\alpha) .
$$

(a) Show that $a=\alpha+\sigma(\alpha)+\cdots+\sigma^{n-1}(\alpha)$ is an element in F.
(b) Show that $K=F((\omega, \alpha))$.
(c) Let $b=(\omega, \alpha)^{n}$. Show that $b \in F$ and that K is the splitting field of $x^{n}-b \in F[x]$ over F.
(d) Give an argument why $x^{n}-b$ is an irreducible polynomial over F.

Problem 5. (Exam June 2014, Problem 2.) Let $F \subseteq E$ where $F=\mathrm{GF}\left(5^{3}\right)$ and $E=\mathrm{GF}\left(5^{24}\right)$. Describe the Galois group $G=\operatorname{Gal}(E / F)$ and list the fields K such that $F \subseteq K \subseteq E$.

Problem 6. (Exercise 18.2.4 in the book.) Let E be a finite separable normal extension over F and let $G(E / F)=\left\{\sigma_{1}=1, \sigma_{2}, \ldots, \sigma_{n}\right\}$. If $\alpha \in E$ we define

$$
T_{E / F}(\alpha)=\sum_{i=1}^{n} \sigma_{i}(\alpha) \text { and } N_{E / F}(\alpha)=\prod_{i=1}^{n} \sigma_{i}(\alpha)
$$

and call these respectively the trace and norm of α in E over F. Show:
(a) $T_{E / F}(\alpha) \in F, N_{E / F}(\alpha) \in F$.
(b) $T_{E / F}$ is an F-linear map of the vector space E over F.
(c) $N_{E / F}$ is a group homomorphism from the group $E^{*}=E \backslash\{0\}$ to the group $F^{*}=F \backslash\{0\}$.
(d) If $G(E / F)$ is a cyclic group generated by σ, then $N_{E / F}(\alpha)=1$ if and only if there exists $b \in E$ such that $\alpha=(\sigma(b))^{-1} b$. (Hint: Generalize Lemma 2.4 (Lemma 15.3 in our notes).)
Problem 7. (Exam June 2014, Problem 4.)
(a) Let $F \subseteq F(\theta)$ and $F \subseteq F(\gamma)$ be two Galois extensions of the field F, where $\operatorname{char}(F)=0$. Show that $F \subseteq F(\theta, \gamma)$ is a Galois extension of F.
(b) Assume $\operatorname{Gal}(F(\theta) / F)$ and $\operatorname{Gal}(F(\gamma) / F)$ are both abelian groups. Show that $\operatorname{Gal}(F(\theta, \gamma) / F))$ is an abelian group.

Problem 8. (Exercise 18.2 .3 in the book.) Let p be a prime and let F be a field. Prove that $x^{p}-b \in F[x]$ is reducible if and only if its splitting field is F or $F(\omega)$ according to whether char $(F)=p$ or $\operatorname{char}(F) \neq p$, where ω is a primitive p-th root of unity.

Extra problems

The following problems may be a bit more challenging, in case you feel like you need something more.
Problem 9. (a) Show that for every $n \in \mathbb{Z}, n \geq 1$ we have

$$
x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)
$$

where $\Phi_{d}(x)$ is the d-th cyclotomic polynomial. Conclude that the constant term of $\Phi_{n}(x)$ is ± 1.
(b) Let $n \in \mathbb{Z}, n \geq 1$. Let $p \geq 2$. Show that if $p \mid \Phi_{n}(\alpha)$, then $p \nmid \alpha$.
(c) Let $n \in \mathbb{Z}, n \geq 1$. Let $\alpha \in \mathbb{Z}$ and let p be a prime such that $\operatorname{gcd}(p, n)=1$. Show that p divides $\Phi_{n}(\alpha)$ if and only if the order of $\bar{\alpha} \in \mathbb{Z}_{p}^{\times}$is n.
(d) (Special case of Dirichlet's theorem) Show that for any $n \geq 1$ there are infinitely many prime numbers p such that $n \mid(p-1)$.
(e) Let G be a finite abelian group. Show that there exists a Galois extension E of \mathbb{Q} such that $\operatorname{Gal}(E / \mathbb{Q}) \cong G$.

Problem 10. Let $F \subseteq E$ be a Galois extension with Galois group G. As in Problem 6 , for any $\alpha \in E$ define the norm of α in E over F via

$$
N_{E / F}(\alpha)=\prod_{\sigma \in G} \sigma(\alpha)
$$

(a) Find $n \in \mathbb{Z}$ such that $i \in \mathbb{Q}(\omega)$, where $\omega \in \mathbb{C}$ is a primitive n-th root of unity.
(b) Show that $\sqrt{2} \in \mathbb{Q}(\omega)$ where $\omega \in \mathbb{C}$ is a primitive 8-th root of unity.
(c) Let $p \geq 3$ be a prime number. Let $\omega \in \mathbb{C}$ be a primitive p-th root of unity.
(i) Show that $N_{\mathbb{Q}(\omega) / \mathbb{Q}}(-1)=1, N_{\mathbb{Q}(\omega) / \mathbb{Q}}(p)=p^{p-1}, N_{\mathbb{Q}(\omega) / \mathbb{Q}}(\omega)=1$ and $N_{\mathbb{Q}(\omega) / \mathbb{Q}}(1-\omega)=p$.
(ii) Show that $N_{\mathbb{Q}(\omega) / \mathbb{Q}}\left(\Phi_{p}^{\prime}(\omega)\right)=p^{p-2}$.
(iii) Show that the discriminant $\Delta:=\prod_{1 \leq i<j \leq p-1}\left(\omega^{i}-\omega^{j}\right)^{2}$ satisfies $\Delta=(-1)^{\frac{p-1}{2}} p^{p-2}$.
(iv) Show that if $p \equiv 1 \bmod 4$, then $\sqrt{p} \in \mathbb{Q}(\omega)$, while if $p \equiv 3 \bmod 4$, then $i \sqrt{p} \in \mathbb{Q}(\omega)$.
(d) Let $n, m \geq 1$. Let $\omega_{n} \in \mathbb{C}$ be a primitive n-th root of unity and $\omega_{m} \in \mathbb{C}$ be a primitive m-th root of unity. Let $l=\operatorname{lcm}(n, m)$ and let $\omega_{l} \in \mathbb{C}$ be a primitive l-th root of unity. Show that $\mathbb{Q}\left(\omega_{n}, \omega_{m}\right)=\mathbb{Q}\left(\omega_{l}\right)$.
(e) Let $k \in \mathbb{Z}$ be an integer. Show that there exists an $n \in \mathbb{Z}, n \geq 1$ such that $\sqrt{k} \in \mathbb{Q}\left(\omega_{n}\right)$ where ω_{n} is a primitive n-th root of unity.

