Galois theory - Problem Set 5

To be solved on Monday 17.04

Problem 1. Let $n \in \mathbb{Z}$, $n \ge 1$. Show that the following hold.

- (a) For every $m \in \mathbb{Z}_n$ we have that the order of m is $o(m) = \frac{n}{\gcd(m,n)}$. In particular, $m \in \mathbb{Z}_n$ is a generator of \mathbb{Z}_n if and only if $\gcd(m,n) = 1$.
- (b) The number of generators of the cyclic group \mathbb{Z}_n is $\phi(n)$.

(c)
$$n = \sum_{d|n} \phi(d)$$
.

Problem 2. (Exam May 2013, Problem 1)

- (a) Let E be the splitting field of $f(x) = x^{14} 1$ over \mathbb{Q} . Show that the Galois group $G = \text{Gal}(E/\mathbb{Q})$ is abelian.
- (b) Let \tilde{E} be the splitting field of $g(x) = x^7 + 1$ over \mathbb{Q} . Show that the Galois group $\tilde{G} = \text{Gal}(\tilde{E}/\mathbb{Q})$ is abelian.

Problem 3. (Exam May 2004, Problem 3) Let p be a prime. Let E be the splitting field of $x^p - 1 \in \mathbb{Q}[x]$ over \mathbb{Q} .

- (a) Prove that $\operatorname{Gal}(E/\mathbb{Q})$ is abelian of order p-1.
- (b) Let $\omega = e^{\frac{2\pi i}{31}}$. Prove that there exists a subfield F of C such that $[F(\omega):F] = 5$.

Problem 4. (Exam May 2009, Problem 5.) Let $F \subseteq K$ be a Galois extension such that G(K/F) is cyclic of order n and let σ be a generator for G(K/F). Assume that F contains a primitive n-th root ω of unity. Let $\alpha \in K \setminus F$ and let $(\omega, \alpha) \neq 0$ be the Lagrange resolvent defined by

$$(\omega, \alpha) = \alpha + \omega \sigma(\alpha) + \dots + \omega^{n-1} \sigma^{n-1}(\alpha).$$

- (a) Show that $a = \alpha + \sigma(\alpha) + \dots + \sigma^{n-1}(\alpha)$ is an element in F.
- (b) Show that $K = F((\omega, \alpha))$.
- (c) Let $b = (\omega, \alpha)^n$. Show that $b \in F$ and that K is the splitting field of $x^n b \in F[x]$ over F.
- (d) Give an argument why $x^n b$ is an irreducible polynomial over F.

Problem 5. (Exam June 2014, Problem 2.) Let $F \subseteq E$ where $F = GF(5^3)$ and $E = GF(5^{24})$. Describe the Galois group G = Gal(E/F) and list the fields K such that $F \subseteq K \subseteq E$.

Problem 6. (Exercise 18.2.4 in the book.) Let E be a finite separable normal extension over F and let $G(E/F) = \{\sigma_1 = 1, \sigma_2, \dots, \sigma_n\}$. If $\alpha \in E$ we define

$$T_{E/F}(\alpha) = \sum_{i=1}^{n} \sigma_i(\alpha) \text{ and } N_{E/F}(\alpha) = \prod_{i=1}^{n} \sigma_i(\alpha)$$

and call these respectively the *trace* and *norm* of α in E over F. Show:

- (a) $T_{E/F}(\alpha) \in F$, $N_{E/F}(\alpha) \in F$.
- (b) $T_{E/F}$ is an F-linear map of the vector space E over F.
- (c) $N_{E/F}$ is a group homomorphism from the group $E^* = E \setminus \{0\}$ to the group $F^* = F \setminus \{0\}$.
- (d) If G(E/F) is a cyclic group generated by σ , then $N_{E/F}(\alpha) = 1$ if and only if there exists $b \in E$ such that $\alpha = (\sigma(b))^{-1}b$. (*Hint*: Generalize Lemma 2.4 (Lemma 15.3 in our notes).)

Problem 7. (Exam June 2014, Problem 4.)

- (a) Let $F \subseteq F(\theta)$ and $F \subseteq F(\gamma)$ be two Galois extensions of the field F, where char(F) = 0. Show that $F \subseteq F(\theta, \gamma)$ is a Galois extension of F.
- (b) Assume $\operatorname{Gal}(F(\theta)/F)$ and $\operatorname{Gal}(F(\gamma)/F)$ are both abelian groups. Show that $\operatorname{Gal}(F(\theta,\gamma)/F)$ is an abelian group.

Problem 8. (Exercise 18.2.3 in the book.) Let p be a prime and let F be a field. Prove that $x^p - b \in F[x]$ is reducible if and only if its splitting field is F or $F(\omega)$ according to whether char(F) = p or char $(F) \neq p$, where ω is a primitive p-th root of unity.

Extra problems

The following problems may be a bit more challenging, in case you feel like you need something more.

Problem 9. (a) Show that for every $n \in \mathbb{Z}$, $n \ge 1$ we have

$$x^n - 1 = \prod_{d|n} \Phi_d(x),$$

where $\Phi_d(x)$ is the *d*-th cyclotomic polynomial. Conclude that the constant term of $\Phi_n(x)$ is ± 1 .

- (b) Let $n \in \mathbb{Z}$, $n \ge 1$. Let $p \ge 2$. Show that if $p \mid \Phi_n(\alpha)$, then $p \nmid \alpha$.
- (c) Let $n \in \mathbb{Z}$, $n \ge 1$. Let $\alpha \in \mathbb{Z}$ and let p be a prime such that gcd(p, n) = 1. Show that p divides $\Phi_n(\alpha)$ if and only if the order of $\overline{\alpha} \in \mathbb{Z}_p^{\times}$ is n.
- (d) (Special case of Dirichlet's theorem) Show that for any $n \ge 1$ there are infinitely many prime numbers p such that $n \mid (p-1)$.
- (e) Let G be a finite abelian group. Show that there exists a Galois extension E of \mathbb{Q} such that $\operatorname{Gal}(E/\mathbb{Q}) \cong G$.

Problem 10. Let $F \subseteq E$ be a Galois extension with Galois group G. As in Problem 6, for any $\alpha \in E$ define the norm of α in E over F via

$$N_{E/F}(\alpha) = \prod_{\sigma \in G} \sigma(\alpha).$$

- (a) Find $n \in \mathbb{Z}$ such that $i \in \mathbb{Q}(\omega)$, where $\omega \in \mathbb{C}$ is a primitive *n*-th root of unity.
- (b) Show that $\sqrt{2} \in \mathbb{Q}(\omega)$ where $\omega \in \mathbb{C}$ is a primitive 8-th root of unity.
- (c) Let $p \geq 3$ be a prime number. Let $\omega \in \mathbb{C}$ be a primitive *p*-th root of unity.
 - (i) Show that $N_{\mathbb{Q}(\omega)/\mathbb{Q}}(-1) = 1$, $N_{\mathbb{Q}(\omega)/\mathbb{Q}}(p) = p^{p-1}$, $N_{\mathbb{Q}(\omega)/\mathbb{Q}}(\omega) = 1$ and $N_{\mathbb{Q}(\omega)/\mathbb{Q}}(1-\omega) = p$.

(ii) Show that
$$N_{\mathbb{Q}(\omega)/\mathbb{Q}}(\Phi'_p(\omega)) = p^{p-2}$$

- (iii) Show that the discriminant $\Delta \coloneqq \prod_{1 \le i < j \le p-1} (\omega^i \omega^j)^2$ satisfies $\Delta = (-1)^{\frac{p-1}{2}} p^{p-2}$.
- (iv) Show that if $p \equiv 1 \mod 4$, then $\sqrt{p} \in \mathbb{Q}(\omega)$, while if $p \equiv 3 \mod 4$, then $i\sqrt{p} \in \mathbb{Q}(\omega)$.
- (d) Let $n, m \ge 1$. Let $\omega_n \in \mathbb{C}$ be a primitive *n*-th root of unity and $\omega_m \in \mathbb{C}$ be a primitive *m*-th root of unity. Let $l = \operatorname{lcm}(n, m)$ and let $\omega_l \in \mathbb{C}$ be a primitive *l*-th root of unity. Show that $\mathbb{Q}(\omega_n, \omega_m) = \mathbb{Q}(\omega_l)$.
- (e) Let $k \in \mathbb{Z}$ be an integer. Show that there exists an $n \in \mathbb{Z}$, $n \ge 1$ such that $\sqrt{k} \in \mathbb{Q}(\omega_n)$ where ω_n is a primitive *n*-th root of unity.