Galois theory - Problem Set 4

To be solved on Monday 20.03

Problem 1. (Exercise 17.1.1 in the book.) Let $E=\mathbb{Q}(\sqrt[3]{2}, \omega)$ be an extension field of \mathbb{Q}, where $\omega^{3}=1$, $\omega \neq 1$. For each of the following subgroups S_{i} of the group $G(E / \mathbb{Q})$ find $E_{S_{i}}$.
(a) $S_{1}=\left\{1, \sigma_{2}\right\}$, where σ_{2} is defined by $\sigma_{2}(\sqrt[3]{2})=\sqrt[3]{2} \omega^{2}$ and $\sigma_{2}(\omega)=\omega^{2}$.
(b) $S_{2}=\left\{1, \sigma_{3}\right\}$, where σ_{3} is defined by $\sigma_{3}(\sqrt[3]{2})=\sqrt[3]{2} \omega$ and $\sigma_{3}(\omega)=\omega^{2}$.
(c) $S_{3}=\left\{1, \sigma_{4}\right\}$, where σ_{4} is defined by $\sigma_{4}(\sqrt[3]{2})=\sqrt[3]{2}$ and $\sigma_{4}(\omega)=\omega^{2}$.
(d) $S_{4}=\left\{1, \sigma_{5}, \sigma_{6}\right\}$ where σ_{5} is defined by $\sigma_{5}(\sqrt[3]{2})=\sqrt[3]{2} \omega$ and $\sigma_{5}(\omega)=\omega$ and σ_{6} is defined by $\sigma_{6}(\sqrt[3]{2})=$ $\sqrt[3]{2} \omega^{2}$ and $\sigma_{6}(\omega)=\omega$.

Solution. We begin by finding a \mathbb{Q}-basis of E. We have the field extensions

$$
\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[3]{2}) \subseteq \mathbb{Q}(\sqrt[3]{2}, \omega)=E
$$

The minimal polynomial of $\sqrt[3]{2}$ over \mathbb{Q} is $x^{3}-2$ (is irreducible by Eisenstein criterion for $p=2$, is monic, and has $\sqrt[3]{2}$ as a root) and the minimal polynomial of ω over $\mathbb{Q}(\sqrt[3]{2})$ is $x^{2}+x+1$ (is irreducible since its roots $\omega, \omega^{2} \notin \mathbb{Q}(\sqrt[3]{2})$, is monic, and has ω as a root). Hence a \mathbb{Q}-basis of $\mathbb{Q}(\sqrt[3]{2})$ is given by $\left\{1, \sqrt[3]{2},(\sqrt[3]{2})^{2}\right\}$ and a $\mathbb{Q}(\sqrt[3]{2})$-basis of $\mathbb{Q}(\sqrt[3]{2}, \omega)$ is given by $\{1, \omega\}$. We conclude that a \mathbb{Q}-basis of $\mathbb{Q}(\sqrt[3]{2}, \omega)$ is given by

$$
\{1, \sqrt[3]{2}, \sqrt[3]{4}, \omega, \omega \sqrt[3]{2}, \omega \sqrt[3]{4}\}
$$

Hence an element $x \in E$ has the form

$$
\begin{equation*}
x=a+b \sqrt[3]{2}+c \sqrt[3]{4}+d \omega+e \omega \sqrt[3]{2}+f \omega \sqrt[3]{4} \tag{1}
\end{equation*}
$$

where $a, b, c, d, e, f \in \mathbb{Q}$.
(a) We have

$$
\sigma_{2}(\sqrt[3]{4})=\sigma_{2}\left((\sqrt[3]{2})^{2}\right)=\sigma_{2}(\sqrt[3]{2})^{2}=\left(\sqrt[3]{2} \omega^{2}\right)^{2}=\omega \sqrt[3]{4}
$$

Moreover since $\sigma_{2} \in G(E / \mathbb{Q})$ we have $\sigma_{2}(k)=k$ for any $k \in \mathbb{Q}$. Now let $x \in E_{S_{1}}$. Then $\sigma_{2}(x)=x$ and so by (1) we obtain

$$
\begin{aligned}
\sigma_{2}(x) & =\sigma_{2}(a+b \sqrt[3]{2}+c \sqrt[3]{4}+d \omega+e \omega \sqrt[3]{2}+f \omega \sqrt[3]{4}) \\
& =\sigma_{2}(a)+\sigma_{2}(b) \sigma_{2}(\sqrt[3]{2})+\sigma_{2}(c) \sigma_{2}(\sqrt[3]{4})+\sigma_{2}(d) \sigma_{2}(\omega)+\sigma_{2}(e) \sigma_{2}(\omega) \sigma_{2}(\sqrt[3]{2})+\sigma_{2}(f) \sigma_{2}(\omega) \sigma_{2}(\sqrt[3]{4}) \\
& =a+b \sqrt[3]{2} \omega^{2}+c \omega \sqrt[3]{4}+d \omega^{2}+e \omega^{2} \omega^{2} \sqrt[3]{2}+f \omega^{2} \omega \sqrt[3]{4} \\
& =a+b \omega^{2} \sqrt[3]{2}+c \omega \sqrt[3]{4}+d \omega^{2}+e \omega \sqrt[3]{2}+f \sqrt[3]{4}
\end{aligned}
$$

Using $\omega^{2}+\omega+1=0$, we have $\omega^{2}=-\omega-1$. Replacing this in the above we obtain

$$
\begin{aligned}
\sigma_{2}(x) & =a+b(-\omega-1) \sqrt[3]{2}+c \omega \sqrt[3]{4}+d(-\omega-1)+e \omega \sqrt[3]{2}+f \sqrt[3]{4} \\
& =a-b \omega \sqrt[3]{2}-b \sqrt[3]{2}+c \omega \sqrt[3]{4}-d \omega-d+e \omega \sqrt[3]{2}+f \sqrt[3]{4} \\
& =(a-d)-b \sqrt[3]{2}+f \sqrt[3]{4}-d \omega+(e-b) \omega \sqrt[3]{2}+c \omega \sqrt[3]{4}
\end{aligned}
$$

Since $x=\sigma_{2}(x)$, we obtain the system of equations

$$
\begin{aligned}
a & =a-d \\
b & =-b \\
c & =f \\
d & =-d \\
e & =e-b \\
f & =c
\end{aligned}
$$

Solving this system we obtain that $b=0, d=0, f=c$ and $a, c, e \in \mathbb{Q}$. Moreover, it is an immediate computation that if x in (1) satisfies $b=0, d=0$ and $f=c$ then $\sigma_{2}(x)=x$. Hence

$$
E_{S_{1}}=\{a+c \sqrt[3]{4}(\omega+1)+e \omega \sqrt[3]{2} \mid a, c, e \in \mathbb{Q}\}=\left\{a+e \omega \sqrt[3]{2}-c(\omega \sqrt[3]{2})^{2} \mid a, c, e \in \mathbb{Q}\right\}=\mathbb{Q}(\omega \sqrt[3]{2})
$$

(b) We have

$$
\sigma_{3}(\sqrt[3]{4})=\sigma_{3}\left((\sqrt[3]{2})^{2}\right)=\sigma_{3}(\sqrt[3]{2})^{2}=(\sqrt[3]{2} \omega)^{2}=\omega^{2} \sqrt[3]{4}
$$

Moreover since $\sigma_{3} \in G(E / \mathbb{Q})$ we have $\sigma_{3}(k)=k$ for any $k \in \mathbb{Q}$. Now let $x \in E_{S_{2}}$. Then $\sigma_{3}(x)=x$ and so using $\omega^{2}=-\omega-1$ and (1) we obtain

$$
\begin{aligned}
\sigma_{3}(x) & =\sigma_{3}(a+b \sqrt[3]{2}+c \sqrt[3]{4}+d \omega+e \omega \sqrt[3]{2}+f \omega \sqrt[3]{4}) \\
& =a+b \sqrt[3]{2} \omega+c \omega^{2} \sqrt[3]{4}+d \omega^{2}+e \omega^{2} \omega \sqrt[3]{2}+f \omega^{2} \omega^{2} \sqrt[3]{4} \\
& =a+b \omega \sqrt[3]{2}+c \omega^{2} \sqrt[3]{4}+d \omega^{2}+e \sqrt[3]{2}+f \omega \sqrt[3]{4} \\
& =a+b \omega \sqrt[3]{2}+c(-\omega-1) \sqrt[3]{4}+d(-\omega-1)+e \sqrt[3]{2}+f \omega \sqrt[3]{4} \\
& =(a-d)+e \sqrt[3]{2}-c \sqrt[3]{4}-d \omega+b \omega \sqrt[3]{2}+(f-c) \omega \sqrt[3]{4}
\end{aligned}
$$

Since $x=\sigma_{3}(x)$, we obtain the system of equations

$$
\begin{aligned}
& a=a-d \\
& b=e \\
& c=-c \\
& d=-d \\
& e=b \\
& f=f-c
\end{aligned}
$$

Solving this system we obtain that $c=0, d=0, e=b$ and $a, b, f \in \mathbb{Q}$. Moreover, it is an immediate computation that if x in (1) satisfies $c=0, d=0$ and $e=b$ then $\sigma_{3}(x)=x$. Hence

$$
E_{S_{2}}=\{a+b \sqrt[3]{2}(\omega+1)+f \omega \sqrt[3]{4} \mid a, b, f \in \mathbb{Q}\}=\left\{a-b \omega^{2} \sqrt[3]{2}+f\left(\omega^{2} \sqrt[3]{2}\right)^{2} \mid a, b, f \in \mathbb{Q}\right\}=\mathbb{Q}\left(\omega^{2} \sqrt[3]{2}\right)
$$

(c) We have

$$
\sigma_{4}(\sqrt[3]{4})=\sigma_{4}\left((\sqrt[3]{2})^{2}\right)=\sigma_{4}(\sqrt[3]{2})^{2}=(\sqrt[3]{2})^{2}=\sqrt[3]{4}
$$

Moreover since $\sigma_{4} \in G(E / \mathbb{Q})$ we have $\sigma_{4}(k)=k$ for any $k \in \mathbb{Q}$. Now let $x \in E_{S_{3}}$. Then $\sigma_{4}(x)=x$ and so using $\omega^{2}=-\omega-1$ and (1) we obtain

$$
\begin{aligned}
\sigma_{4}(x) & =\sigma_{4}(a+b \sqrt[3]{2}+c \sqrt[3]{4}+d \omega+e \omega \sqrt[3]{2}+f \omega \sqrt[3]{4}) \\
& =a+b \sqrt[3]{2}+c \sqrt[3]{4}+d \omega^{2}+e \omega^{2} \sqrt[3]{2}+f \omega^{2} \sqrt[3]{4} \\
& =a+b \sqrt[3]{2}+c \sqrt[3]{4}+d(-\omega-1)+e(-\omega-1) \sqrt[3]{2}+f(-\omega-1) \sqrt[3]{4} \\
& =(a-d)+(b-e) \sqrt[3]{2}+(c-f) \sqrt[3]{4}-d \omega-e \omega \sqrt[3]{2}-f \omega \sqrt[3]{4}
\end{aligned}
$$

Since $x=\sigma_{3}(x)$, we obtain the system of equations

$$
\begin{aligned}
a & =a-d, \\
b & =b-e, \\
c & =c-f, \\
d & =-d, \\
e & =-e, \\
f & =-f .
\end{aligned}
$$

Solving this system we obtain that $d=0, e=0, f=0$ and $a, b, c \in \mathbb{Q}$. Moreover, it is an immediate computation that if x in (1) satisfies $d=0, e=0$ and $f=0$ then $\sigma_{4}(x)=x$. Hence

$$
E_{S_{3}}=\{a+b \sqrt[3]{2}+c \sqrt[3]{4} \mid a, b, c \in \mathbb{Q}\}=\mathbb{Q}(\sqrt[3]{2})
$$

(d) We have

$$
\sigma_{5}(\sqrt[3]{4})=\sigma_{5}\left((\sqrt[3]{2})^{2}\right)=\sigma_{5}(\sqrt[3]{2})^{2}=(\sqrt[3]{2} \omega)^{2}=\omega^{2} \sqrt[3]{4}
$$

Moreover since $\sigma_{5}, \sigma_{6} \in G(E / \mathbb{Q})$ we have $\sigma_{5}(k)=k$ and $\sigma_{6}(k)=k$ for any $k \in \mathbb{Q}$. Now let $x \in E_{S_{4}}$. Then $\sigma_{5}(x)=x$ and so using $\omega^{2}=-\omega-1$ and (1) we obtain

$$
\begin{aligned}
\sigma_{5}(x) & =\sigma_{5}(a+b \sqrt[3]{2}+c \sqrt[3]{4}+d \omega+e \omega \sqrt[3]{2}+f \omega \sqrt[3]{4}) \\
& =a+b \sqrt[3]{2} \omega+c \omega^{2} \sqrt[3]{4}+d \omega+e \omega \omega \sqrt[3]{2}+f \omega \omega^{2} \sqrt[3]{4} \\
& =a+b \omega \sqrt[3]{2}+c \omega^{2} \sqrt[3]{4}+d \omega+e \omega^{2} \sqrt[3]{2}+f \sqrt[3]{4} \\
& =a+b \omega \sqrt[3]{2}+c(-\omega-1) \sqrt[3]{4}+d \omega+e(-\omega-1) \sqrt[3]{2}+f \sqrt[3]{4} \\
& =a-e \sqrt[3]{2}+(f-c) \sqrt[3]{4}+d \omega+(b-e) \omega \sqrt[3]{2}-c \omega \sqrt[3]{4} .
\end{aligned}
$$

Since $x=\sigma_{5}(x)$, we obtain the system of equations

$$
\begin{aligned}
a & =a, \\
b & =-e, \\
c & =f-c, \\
d & =d, \\
e & =b-e, \\
f & =-c .
\end{aligned}
$$

Solving this system we obtain that $b=0, c=0, e=0, f=0$ and $a, d \in \mathbb{Q}$. Hence $x=a+d \omega$. Since $\sigma_{6}(\omega)=\omega$, it follows that $\sigma_{6}(x)=x$. Moreover it is an immediate computation that if x in (1) satisfies $b=0, c=0, e=0$ and $f=0$, then $\sigma_{5}(x)=x$ and $\sigma_{6}(x)=x$. Hence

$$
E_{S_{4}}=\{a+d \omega \mid a, d \in \mathbb{Q}\}=\mathbb{Q}(\omega)
$$

Problem 2. (Exam June 2015, Problem 5.) Let $E=F\left(\alpha_{1}, \alpha_{2}\right)$ be a Galois extension of a field F, and let $K_{1}=F\left(\alpha_{1}\right)$ and $K_{2}=F\left(\alpha_{2}\right)$. Consider the subgroups $H_{1}=G\left(E / K_{1}\right)$ and $H_{2}=G\left(E / K_{2}\right)$ of the Galois group $G(E / F)$.
(a) Show that $H_{1} \cap H_{2}=\{e\}$, that is, the intersection of H_{1} with H_{2} is the trivial subgroup of $G(E / F)$.
(b) Suppose that each element $g_{1} \in H_{1}$ maps K_{2} to K_{2}, and that each element $g_{2} \in H_{2}$ maps K_{1} to K_{1}. Show that $g_{1} g_{2}=g_{2} g_{1}$ for all $g_{1} \in H_{1}, g_{2} \in H_{2}$.

Solution.

(a) Let $g \in H_{1} \cap H_{2}$. Then $g \in \operatorname{Gal}\left(E / K_{1}\right)$ and so $\left.g\right|_{K_{1}}=\operatorname{id}_{K_{1}}$. In particular, $g\left(\alpha_{1}\right)=\alpha_{1}$. Similarly, we have $g\left(\alpha_{2}\right)=\alpha_{2}$. Moreover, $\left.g\right|_{F}=\operatorname{id}_{F}$ since $F \subseteq K_{1}$ and so $g(x)=x$ for every $x \in F$. Consider the field extensions

$$
F \subseteq F\left(\alpha_{1}\right) \subseteq F\left(\alpha_{1}, \alpha_{2}\right)
$$

Since $F \subseteq F\left(\alpha_{1}, \alpha_{2}\right)$ is a Galois extension, it is in particular a finite field extension. Hence a basis of $F\left(\alpha_{1}\right)$ over F is given by $\left\{1, \alpha_{1}, \ldots, \alpha_{1}^{d}\right\}$ for some $d \geq 0$ and a basis of $F\left(\alpha_{1}, \alpha_{2}\right)$ over $F\left(\alpha_{1}\right)$ is given by $\left\{1, \alpha_{2}, \ldots, \alpha_{2}^{s}\right\}$ for some $s \geq 0$. Hence a basis of $F\left(\alpha_{1}, \alpha_{2}\right)$ over F is given by

$$
B=\left\{\alpha_{1}^{i} \alpha_{2}^{j} \mid 0 \leq i \leq d, 0 \leq j \leq s\right\} .
$$

But $g\left(\alpha_{1}\right)=\alpha_{1}$ and $g\left(\alpha_{2}\right)=\alpha_{2}$ implies that $\left.g\right|_{B}=\operatorname{id}_{B}$ since g is a ring homomorphism. It follows that $g: F\left(\alpha_{1}, \alpha_{2}\right) \rightarrow F\left(\alpha_{1}, \alpha_{2}\right)$ is the identity map. Since $g \in H_{1} \cap H_{2}$ was arbitrary, we conclude that $H_{1} \cap H_{2}=\left\{\mathrm{id}_{E}\right\}$, as required.
(b) Let $\alpha \in E=F\left(\alpha_{1}, \alpha_{2}\right)$. It is enough to show that $g_{1} g_{2}(\alpha)=g_{2} g_{1}(\alpha)$ for any $\alpha \in E$. Since $\left.g_{1}\right|_{F}=\operatorname{id}_{F}$ and $\left.g_{2}\right|_{F}=\operatorname{id}_{F}$, for every $x \in F$ we have

$$
g_{1} g_{2}(x)=g_{1} \operatorname{id}_{F}(x)=g_{1}(x)=\operatorname{id}_{F}(x)=x
$$

and similarly $g_{2} g_{1}(x)=x$. Hence $g_{1} g_{2}(x)=g_{2} g_{1}(x)$ for every $x \in F$. Moreover, since $\left.g_{1}\right|_{F\left(\alpha_{1}\right)}=$ $\operatorname{id}_{F\left(\alpha_{1}\right)}$, we have

$$
g_{2} g_{1}\left(\alpha_{1}\right)=g_{2} \operatorname{id}_{F\left(\alpha_{1}\right)}\left(\alpha_{1}\right)=g_{2}\left(\alpha_{1}\right)
$$

On the other hand, since $g_{2}\left(K_{1}\right) \subseteq K_{1}$, we have that $g_{2}\left(\alpha_{1}\right) \in K_{1}=F\left(\alpha_{1}\right)$. Therefore

$$
g_{1} g_{2}\left(\alpha_{1}\right)=\operatorname{id}_{F\left(\alpha_{1}\right)} g_{2}\left(\alpha_{1}\right)=g_{2}\left(\alpha_{1}\right)
$$

Hence we have shown that $g_{2} g_{1}\left(\alpha_{1}\right)=g_{1} g_{2}\left(\alpha_{1}\right)$. Similarly we have $g_{2} g_{1}\left(\alpha_{2}\right)=g_{1} g_{2}\left(\alpha_{2}\right)$. Therefore, and since $g_{1} g_{2}$ and $g_{2} g_{1}$ are ring homomorphisms, we see that $\left.g_{1} g_{2}\right|_{B}=\left.g_{2} g_{1}\right|_{B}$ where

$$
B=\left\{\alpha_{1}^{i} \alpha_{2}^{j} \mid 0 \leq i \leq d, 0 \leq j \leq s\right\} .
$$

is an F-basis of E as in part (a). Since $g_{1} g_{2}$ and $g_{2} g_{1}$ agree on both F and an F-basis of E, it readily follows that $g_{1} g_{2}(\alpha)=g_{2} g_{1}(\alpha)$ for every $\alpha \in E$, as required.

Problem 3. (Exercise 17.2 .1 in the book.) Find the Galois groups $G(K / \mathbb{Q})$ of the following extensions K of \mathbb{Q} :
(a) $K=\mathbb{Q}(\sqrt{3}, \sqrt{5})$.
(b) $K=\mathbb{Q}(\alpha)$, where $\alpha=\cos 2 \pi / 3+i \sin 2 \pi / 3$.
(c) K is the splitting field of $x^{4}-3 x^{2}+4 \in \mathbb{Q}[x]$.

Solution.

(a) By Example 5.5 we have that

$$
[\mathbb{Q}(\sqrt{3}, \sqrt{5}): \mathbb{Q}]=[\mathbb{Q}(\sqrt{3}, \sqrt{5}): \mathbb{Q}(\sqrt{3})][\mathbb{Q}(\sqrt{3}): \mathbb{Q}]=2 \cdot 2=4
$$

Moreover a \mathbb{Q}-basis of $\mathbb{Q}(\sqrt{3})$ is given by $\{1, \sqrt{3}\}$ and a $\mathbb{Q}(\sqrt{3})$-basis of $\mathbb{Q}(\sqrt{3}, \sqrt{5})$ is given by $\{1, \sqrt{5}\}$. Hence a \mathbb{Q}-basis of $\mathbb{Q}(\sqrt{3}, \sqrt{5})$ is given by $\{1, \sqrt{3}, \sqrt{5}, \sqrt{15}\}$.
In particular, $\mathbb{Q} \subseteq K$ is a finite extension. Moreover K is the splitting field of $\left(x^{2}-3\right)\left(x^{2}-5\right)$ hence $\mathbb{Q} \subseteq K$ is a normal extension. Since \mathbb{Q} is a perfect field, the extension is also separable and so $\mathbb{Q} \subseteq K$ is Galois. Moreover $G(K / \mathbb{Q})$ has order 4 since $[K: \mathbb{Q}]=4$.
Let $\sigma \in G(K / \mathbb{Q})$. Since $K=\mathbb{Q}(\sqrt{3}, \sqrt{5}), \sigma$ is defined by its values on $\sqrt{3}$ and $\sqrt{5}$. We have

$$
3=\sigma(3)=\sigma(\sqrt{3} \sqrt{3})=\sigma(\sqrt{3}) \sigma(\sqrt{3})=\sigma(\sqrt{3})^{2}
$$

and so $\sigma(\sqrt{3}) \in\{\sqrt{3},-\sqrt{3})$. Similarly, $\sigma(\sqrt{5}) \in\{\sqrt{5},-\sqrt{5})$. Hence we have four different elements of $G(K / \mathbb{Q})$, say $\left\{\sigma_{++}, \sigma_{+-}, \sigma_{-+}, \sigma_{--}\right\}$where

$$
\begin{aligned}
& \sigma_{++}(\sqrt{3})=\sqrt{3}, \sigma_{++}(\sqrt{5})=\sqrt{5}, \\
& \sigma_{+-}(\sqrt{3})=\sqrt{3}, \sigma_{+-}(\sqrt{5})=-\sqrt{5}, \\
& \sigma_{-+}(\sqrt{3})=-\sqrt{3}, \sigma_{-+}(\sqrt{5})=\sqrt{5}, \\
& \sigma_{--}(\sqrt{3})=-\sqrt{3}, \sigma_{--}(\sqrt{5})=-\sqrt{5} .
\end{aligned}
$$

Since $G(K / \mathbb{Q})$ has order 4 , we conclude that $G(K / \mathbb{Q})=\left\{\sigma_{++}, \sigma_{+-}, \sigma_{-+}, \sigma_{--}\right\} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ (since no element has order 4).
(b) We have $\alpha=e^{\frac{2 \pi i}{3}}$ and so $\alpha^{3}=1$. Since the minimal polynomial of α over \mathbb{Q} is $x^{2}+x+1$ (irreducible since its roots are α and α^{2}) we have $[\mathbb{Q}(\alpha): \mathbb{Q}]=2$. Hence $G(K / \mathbb{Q})$ has two elements and therefore it is the group \mathbb{Z}_{2}.
(c) Since K is the splitting field of a polynomial over \mathbb{Q}, the extension $\mathbb{Q} \subseteq K$ is Galois. We find the roots of $f(x):=x^{4}-3 x^{2}+4$. By setting $x^{2}=y$ the equation $f(x)=0$ be comes $y^{2}-3 y+4=0$. Hence

$$
y=\frac{3 \pm \sqrt{9-16}}{2}=\frac{3 \pm i \sqrt{7}}{2},
$$

and so $x^{2}=\frac{3 \pm i \sqrt{7}}{2}$. To find x let us set $x=a+b i$. Then $(a+b i)^{2}=\frac{3 \pm i \sqrt{7}}{2}$ gives

$$
a^{2}-b^{2}+2 a b i=\frac{3}{2} \pm i \frac{\sqrt{7}}{2}
$$

and so we get the equations

$$
\begin{equation*}
a^{2}-b^{2}=\frac{3}{2} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
2 a b=\frac{\sqrt{7}}{2} . \tag{3}
\end{equation*}
$$

On the other hand, we have

$$
\left|(a+b i)^{2}\right|=\left|\frac{3 \pm i \sqrt{7}}{2}\right|
$$

and since $\left|(a+b i)^{2}\right|=|a+b i|^{2}=a^{2}+b^{2}$, we conclude that

$$
\begin{equation*}
a^{2}+b^{2}=\sqrt{\left(\frac{3}{2}\right)^{2}+\left(\frac{\sqrt{7}}{2}\right)^{2}}=\sqrt{\frac{9}{4}+\frac{7}{4}}=\sqrt{4}=2 . \tag{4}
\end{equation*}
$$

Then (2) and (4) give

$$
2 a^{2}=2+\frac{3}{2}=\frac{7}{2}
$$

and so $a= \pm \frac{\sqrt{7}}{2}$. From (3) we obtain $b= \pm \frac{1}{2}$. We conclude that the roots of $f(x)$ are

$$
\left\{\frac{\sqrt{7}+i}{2}, \frac{\sqrt{7}-i}{2}, \frac{-\sqrt{7}+i}{2}, \frac{-\sqrt{7}-i}{2}\right\} .
$$

Hence $K=\mathbb{Q}(\sqrt{7}, i)$. Then

$$
[K: \mathbb{Q}]=[\mathbb{Q}(\sqrt{7}, i): \mathbb{Q}]=[\mathbb{Q}(\sqrt{7}, i): \mathbb{Q}(\sqrt{7})][\mathbb{Q}(\sqrt{7}): \mathbb{Q}]=2 \cdot 2=4,
$$

because the minimal polynomial of $\sqrt{7}$ over \mathbb{Q} is $x^{2}-7$, while the minimal polynomial of i over $\mathbb{Q}(\sqrt{7})$ is $x^{2}+1$. Hence by the FTGT we have that $G(K / \mathbb{Q})$ is a group of order 4. An element $\sigma \in G(K / \mathbb{Q})$ is defined by its values on $\sqrt{7}$ and i. Therefore the automorphisms defined by

$$
\begin{aligned}
& \sigma_{++}(\sqrt{7})=\sqrt{7}, \sigma_{++}(i)=i, \\
& \sigma_{+-}(\sqrt{7})=\sqrt{7}, \sigma_{+-}(\sqrt{i})=-\sqrt{i}, \\
& \sigma_{-+}(\sqrt{7})=-\sqrt{7}, \sigma_{-+}(\sqrt{i})=\sqrt{i}, \\
& \sigma_{--}(\sqrt{7})=-\sqrt{7}, \sigma_{--}(\sqrt{i})=-\sqrt{i}
\end{aligned}
$$

are all the elements of $G(K / \mathbb{Q})$, and so $G(K / \mathbb{Q}) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ (since no element of $G(K / \mathbb{Q})$ has order 4).
Problem 4. (Exam May 2017, Problem 3(c)-(e).) Let E be the splitting field of $f(x)=x^{17}-2 \in \mathbb{Q}[x]$ over \mathbb{Q}, that is $E=\mathbb{Q}(\omega, \sqrt[17]{2})$ where $\omega=e^{\frac{2 \pi i}{17}}$. (see Problem 7 in Problem Set 3).
(a) Let $G=\operatorname{Gal}(E / \mathbb{Q})$ be the Galois group of E over \mathbb{Q}. Show that there exists an intermediate field L, $\mathbb{Q} \subseteq L \subseteq E$, such that L corresponds by the Galois correspondence to a normal subgroup H of G of order 17. Explain your argument.
(b) Show that there exists an intermediate field $M, \mathbb{Q} \subseteq M \subseteq E$, such that $[M: \mathbb{Q}]=34$. [Hint: Use Sylov's Theorem.]
(c) Show that G is non-abelian. [Hint: G abelian implies that all subgroups are normal.]

Solution.

(a) Let $L=\mathbb{Q}(\omega)$. Then ω is a root of $x^{17}-1=(x-1) \Phi_{17}(x)$. Moreover, the roots of $\Phi_{17}(x)$ are ω^{i} for $1 \leq 16$. Hence $\mathbb{Q}(\omega)$ is the splitting field of $\Phi_{17}(x) \in \mathbb{Q}[x]$. Therefore the field extension $\mathbb{Q} \subseteq \mathbb{Q}(\omega)$ is normal. By FTGT(5) we conclude $H:=\operatorname{Gal}(E / L)$ is a normal subgroup of $\operatorname{Gal}(E / \mathbb{Q})$. On the other hand, we have that the minimal polynomial of ω over \mathbb{Q} is $\Phi_{17}(x)$ by Example 3.11(2). Therefore

$$
[L: \mathbb{Q}]=[\mathbb{Q}(\omega): \mathbb{Q}]=\operatorname{deg}\left(\Phi_{17}(x)\right)=16 .
$$

By Problem 7 in Problem Set 3 we have that $[E: \mathbb{Q}]=17 \cdot 16$. Hence

$$
17 \cdot 16=[E: \mathbb{Q}]=[E: L][L: \mathbb{Q}]=[E: L] \cdot 16
$$

implies that $[E: L]=17$. Then we obtain by FTGT(3) that

$$
|\operatorname{Gal}(E / L)|=[E: L]=17,
$$

as required.
(b) By FTGT(3) we have that

$$
|\operatorname{Gal}(E / \mathbb{Q})|=[E: \mathbb{Q}]=17 \cdot 16=272 .
$$

Since $8=2^{3}$ divides 272, it follows by Sylow's first theorem (Theorem 8.4.2 in the book) that there exists a subgroup $F<\operatorname{Gal}(E / \mathbb{Q})$ with $|F|=8$. Let $M=E_{F}$ so that $\mathbb{Q} \subseteq M \subseteq E$. Then $F=\operatorname{Gal}(E / M)$ by FTGT(2). By FTGT(3) we obtain

$$
[E: M]=|\operatorname{Gal}(E / M)|=|F|=8 .
$$

But then

$$
272=[E: \mathbb{Q}]=[E: M][M: \mathbb{Q}]=8 \cdot[M: \mathbb{Q}]
$$

implies $[M: \mathbb{Q}]=34$, as required.
(c) Consider the field extension

$$
\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[17]{2}) \subseteq E
$$

Then the polynomial $f(x)=x^{17}-2$ is irreducible over $\mathbb{Q}($ Eisenstein for $p=2)$ and has a root in $\mathbb{Q}(\sqrt[17]{2})$. However, it does not have all of its roots in $\mathbb{Q}(\sqrt[17]{2})$, since $\omega \notin \mathbb{Q}(\sqrt[17]{2})$. By Theorem 8.5 we conclude that $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[17]{2})$ is not a normal extension. By FTGT(5) we conclude that $\operatorname{Gal}(E / \mathbb{Q}(\sqrt[17]{2}))$ is not a normal subgroup of $G=\operatorname{Gal}(E / \mathbb{Q})$. Using the hint we conclude that G is not an abelian group.

Problem 5. (Exam June 2015, Problem 7.) Let $f(x)=x^{5}-x-1 \in \mathbb{Z}_{5}[x]$ and $E=\mathbb{Z}_{5}(\beta)$, where β is a root of $f(x)$.
(a) Show that $\beta+1, \beta+2, \beta+3, \beta+4$ are also roots of $f(x)$. Deduce that $\beta \notin \mathbb{Z}_{5}$.
(b) Define $\sigma \in G\left(E / \mathbb{Z}_{5}\right)$ by $\sigma(\beta)=\beta+1$. Find the order of σ in $G\left(E / \mathbb{Z}_{5}\right)$, and describe the action of σ on the roots of $f(x)$.
(c) Use the above and the FTGT to deduce that $f(x)$ is irreducible, and that $\left[E: \mathbb{Z}_{5}\right]=5$.

Solution.

(a) Since $\operatorname{char}(E)=5$, we have that $(a+b)^{5}=a^{5}+b^{5}$ for all $a, b \in E$. Moreover, by Fermat's little theorem we have $k^{5}=k$ for all $k \in \mathbb{Z}_{5}$. Hence for $k \in\{1,2,3,4\}$ we have

$$
f(\beta+k)=(\beta+k)^{5}-(\beta+k)-1=\beta^{5}+k^{5}-\beta-k-1=\left(\beta^{5}-\beta-1\right)+k^{5}-k=f(\beta)=0
$$

We conclude that $\beta+k$ is a root of f for $k \in\{1,2,3,4\}$. Assume to a contradiction that $\beta \in \mathbb{Z}_{5}$. Since $f(0)=-1 \neq 0$, we conclude that $\beta \in\{1,2,3,4\}$. But then $\beta+k$ is a root of $f(x)$ for all $k \in\{1,2,3,4\}$ and since $\beta+k=0$ for some $k \in\{1,2,3,4\}$ we obtain a contradiction (again, because 0 is not a root of $f(x)$.)
(b) We have $\sigma(k)=k$ for all $k \in \mathbb{Z}_{5}$, since $\sigma \in G\left(E / \mathbb{Z}_{5}\right)$. Since σ is a ring homomorphism, we have $\sigma(\beta+k)=\sigma(\beta)+\sigma(k)=\beta+k$ for all $k \in\{1,2,3,4\}$. Then

$$
\beta \stackrel{\sigma}{\longmapsto} \beta+1 \stackrel{\sigma}{\longmapsto} \beta+2 \stackrel{\sigma}{\longmapsto} \beta+3 \stackrel{\sigma}{\longmapsto} \beta+4 \stackrel{\sigma}{\longmapsto} \beta+5=\beta
$$

and so the order of σ is 5 .
If $\beta \in \mathbb{Z}_{5}$, then either $\beta=0$ or $\beta \in\{1,2,3,4\}$.
(c) The extension $\mathbb{Z}_{5} \subseteq E=\mathbb{Z}_{5}(\beta)$ is finite since β is algebraic over \mathbb{Z}_{5}, is separable since \mathbb{Z}_{5} is a finite field and is normal since it is the splitting field of $f(x)$ over \mathbb{Z}_{5}. Hence $\mathbb{Z}_{5} \subseteq E$ is a Galois extension. Since $f(\beta)=0$, we conclude that $\left[E: \mathbb{Z}_{5}\right] \leq 5$. On the other hand, since $\sigma \in G\left(E / \mathbb{Z}_{5}\right)$ has order 5 , we conclude that $5 \leq\left|G\left(E / \mathbb{Z}_{5}\right)\right|$. By FTGT(3) we have that $\left|G\left(E / \mathbb{Z}_{5}\right)\right|=\left[E: \mathbb{Z}_{5}\right]$. Hence we have

$$
5 \leq\left|G\left(E / \mathbb{Z}_{5}\right)\right|=\left[E: \mathbb{Z}_{5}\right] \leq 5
$$

from which we conclude that $\left[E: \mathbb{Z}_{5}\right]=5$. We claim that $f(x)$ is the minimal polynomial of β over \mathbb{Z}_{5}. Indeed, if that is not the case, and since $f(\beta)=0$ and $f(x)$ is monic, we conclude that there exists an irreducible polynomial $g(x)$ with $\operatorname{deg}(g)<5$ and $g(\beta)=0$. But then

$$
5=\left[E: \mathbb{Z}_{5}\right]=\left[\mathbb{Z}_{5}(\beta): \mathbb{Z}_{5}\right]=\operatorname{deg}(g)=4
$$

and we obtain a contradiction.
Problem 6. (Exam June 2015, Problem 6.) Let $F \subseteq E$ be a Galois extension of degree $[E: F]$.
(a) Is it possible that $[E: F]=4$ and that there are precisely two proper intermediate fields between E and F ?
(b) Suppose that $[E: F]=6$ and that E is the splitting field of a polynomial of degree 3 (and a Galois extension of F.) How many proper intermediate fields are there between E and F ?

Solution.

(a) Assume $[E: F]=4$. Since $E \subseteq F$ is Galois, the Galois group $G(E / F)$ has order 4. Hence either $G(E / F) \cong \mathbb{Z}_{4}$ or $G(E / F) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. The group \mathbb{Z}_{4} has precisely one proper subgroup, namely $\{0,2\}$. The group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ has precisely three proper subgroups, namely $\{(0,0),(0,1)\},\{(0,0),(1,0)\}$ and $\{(0,0),(1,1)\}$. By the FTGT it follows that there are either one or three proper intermediate fields between E and F and so the answer is no.
(b) Let $f(x) \in F[x]$ be the polynomial of degree 3 for which E is a splitting field. By the FTGT we have that $G(E / F)$ has order $[E: F]=6$. Let $\alpha \in E$ be a root of $f(x)$. We claim that $\alpha \notin F$. Indeed, if $\alpha \in F$, then $f(x)=(x-\alpha) p(x)$ where $p(x) \in F[x]$ has degree 2 . In particular, E is the splitting field of $p(x)$. Then let β, γ be the roots of $p(x)$ in E. Then $p(x)$ is divided by $x-\beta$ in $F(\beta)$, implying that $\gamma \in F(\beta)$. Hence $E=F(\beta, \gamma)=F(\beta)$ and so

$$
6=[E: F]=[F(\beta): F] \leq \operatorname{deg}(p)=2
$$

a contradiction.
Hence no root of $f(x)$ is in F. Let $\alpha_{1}, \alpha_{2}, \alpha_{3} \in E$ be the roots of $f(x)$. Then $F \subseteq F\left(\alpha_{i}\right)$ is a proper field extension for each $i \in\{1,2,3\}$. We claim that $F\left(\alpha_{i}\right) \subseteq E$ is also a proper field extension for each $i \in\{1,2,3\}$. Indeed, we have

$$
\left[F\left(\alpha_{i}\right): F\right] \leq \operatorname{deg}(f(x))=3<6=[E: F]
$$

and so $E=F\left(\alpha_{i}\right)$ is impossible. We conclude that $F\left(\alpha_{1}\right), F\left(\alpha_{2}\right)$ and $F\left(\alpha_{3}\right)$ are three proper intermediate fields between E and F. Since $[G(E / F)]=6$, we have by the FTGT that $G(E / F)=S_{3}$ or $G(E / F)=\mathbb{Z}_{6}$. Since \mathbb{Z}_{6} has only 2 proper subgroups, we conclude that $G(E / F)=S_{3}$. It remains to find how many proper subgroups S_{3} has. Since S_{3} has order 6 , any nontrivial proper subgroup of S_{3} has order 2 or 3 and so its cyclic. Hence if $S_{3}=\{\mathrm{id},(12),(13),(23),(123),(132)\}$, then the subgroups are $\{\mathrm{id},(12)\},\{\mathrm{id},(13)\},\{\mathrm{id},(23)\}$ and $\{\mathrm{id},(123),(132)\}$. Since there are four proper nontrivial subgroups of S_{3}, by the FTGT it follows that there are four proper intermediate fields between F and E.

Problem 7. (Exam May 2017, Problem 5, Exam May 2013, Problem 6.) Let N be a Galois extension of K such that $G(N / K)$ is abelian. Let $\alpha \in N$ and let $p(x) \in K[x]$ be the minimal polynomial of α over K. Show that all roots of $p(x)$ lie in $K(\alpha)$.

Solution. By Theorem 8.5 it is enough to show that $K \subseteq K(\alpha)$ is a normal field extension. We have field extensions $K \subseteq K(\alpha) \subseteq N$ where $K \subseteq N$ is Galois by assumption. Let $G=\operatorname{Gal}(N / K)$ and $H=$ $\operatorname{Gal}(N / K(\alpha))$. In particular, H is a subgroup of G. Since G is abelian by assumption, we conclude that H is a normal subgroup of G (since all subgroups of abelian groups are normal). By FTGT(5) we conclude that $K \subseteq K(\alpha)$, as required.

Problem 8. (Exercise 17.2 .3 in the book.) Let $u \in \mathbb{R}$ and let $\mathbb{Q}(u)$ be a normal extension of \mathbb{Q} such that $[\mathbb{Q}(u): \mathbb{Q}]=2^{m}$, where $m \geq 0$. Show that there exist intermediate fields K_{i} such that

$$
K_{0}=\mathbb{Q} \subseteq K_{1} \subseteq K_{2} \subseteq \cdots \subseteq K_{m}=\mathbb{Q}(u)
$$

where $\left[K_{i}: K_{i-1}\right]=2$. (Hint: Sylow's first theorem.)
Solution. We show the more general fact that if $\mathbb{Q} \subseteq K \subseteq \mathbb{Q}(u)$ and $K \subseteq \mathbb{Q}(u)$ is a normal extension of K such that $[\mathbb{Q}(u): K]=2^{m}$, then there exist intermediate fields K_{i} such that

$$
K=K_{0} \subseteq K_{1} \subseteq K_{2} \subseteq \cdots \subseteq K_{m}=\mathbb{Q}(u)
$$

where $\left[K_{i}: K_{i-1}\right]=2$. Then the claim in the statement of the problem follows by setting $K=\mathbb{Q}$.

The extension $K \subseteq \mathbb{Q}(u)$ is normal and finite by assumption. To show that it is separable, notice that $\mathbb{Q} \subseteq K$ implies that K has characteristic 0 and so is a perfect field. Therefore $K \subseteq K(u)$ is separable. Hence it is a Galois extension. We use induction on $m \geq 0$. For $m=0$ there is nothing to show. For $m=1$ we have that $[\mathbb{Q}(u): K]=2$ and the claim follows immediately. For the induction step, assume that the claim is true for m and we show it is true for $m+1$. Assume then that $[\mathbb{Q}(u): K]=2^{m+1}$. Then $G:=\operatorname{Gal}(\mathbb{Q}(u) / K)$ is a group of order 2^{m+1} by FTGT(3). Hence by Sylow's first theorem (Theorem 8.4.2 in the book) there exists a subgroup H of $G=\operatorname{Gal}(\mathbb{Q}(u) / K)$ of order 2^{m}. By FTGT(2) we have $H=G\left(\mathbb{Q}(u) / K_{H}\right)$. Set $K_{H}=L$, so that we have field extensions $\mathbb{Q} \subseteq K \subseteq L \subseteq \mathbb{Q}(u)$. By $\operatorname{FTGT}(3)$ we have that

$$
[\mathbb{Q}(u): L]=|G(\mathbb{Q}(u) / L)|=|H|=2^{m}
$$

In particular we have $K \subseteq L \subseteq \mathbb{Q}(u)$ and $K \subseteq \mathbb{Q}(u)$ is normal by assumption. Then by Problem 17 in Problem Set 2 we conclude that $L \subseteq \mathbb{Q}(u)$ is also a normal extension. Since $[\mathbb{Q}(u): L]=2^{m}$, by induction hypothesis we conclude that there exist intermediate fields

$$
L=L_{0} \subseteq L_{1} \subseteq L_{2} \subseteq \cdots \subseteq L_{m}=\mathbb{Q}(u)
$$

where $\left[L_{i}: L_{i-1}\right]=2$. On the other hand, by $\operatorname{FTGT}(3)$ we have that

$$
[L: K]=\frac{|\operatorname{Gal}(\mathbb{Q}(u) / K)|}{|\operatorname{Gal}(\mathbb{Q}(u) / L)|}=\frac{2^{m+1}}{2^{m}}=2
$$

Hence by setting $K_{0}=K$ and $K_{i}=L_{i-1}$ for $1 \leq i \leq m+1$, the claim follows.

Extra problems

The following problems may be a bit more challenging, in case you feel like you need something more.
Problem 9. Let F be a field and $f(x) \in F[x]$ be a polynomial of degree $n \geq 1$. Let E be the splitting field of $f(x)$. Show that $[E: F]$ divides $n!$.

Solution. We use induction on $n \geq 1$. If $n=1$ then $f(x)=a+b x$ for some $a, b \in F$ and so $E=F$. Then $[E: F]=1$ divides $n!=1!=1$.

Suppose now that the claim is true for any polynomial of degree strictly less than n and we show that it holds for $f(x) \in F[x]$ of degree n. We consider the cases where $f(x)$ is reducible and $f(x)$ is irreducible separately.

Case $f(x)$ is reducible. Then $f(x)=g(x) h(x)$ for some $g(x), h(x) \in F[x]$ with $\operatorname{deg}(g(x))=l \geq 1$ and $\operatorname{deg}(h(x))=m \geq 1$. Then $n=l+m$ and so $l, m<n$. Let K be the splitting field of $g(x)$ over F. Then $g(x)$ factors as a product of linear factors in $K[x]$ and

$$
K=F(\{r \in K \mid g(r)=0\})
$$

Moreover, we have that $[E: K]$ divides l ! by induction hypothesis. Notice that $h(x) \in K[x]$. Let L be the splitting field of $h(x)$ over K. Then $h(x)$ factors as a product of linear factors in $L[x]$ and

$$
L=K(\{s \in L \mid h(s)=0\})
$$

Again by induction hypothesis we have that $[L: K]$ divides m !. Now notice that $f(x)$ factors as a product of linear factors in $L[x]$ (since $g(x)$ and $h(x)$ do so) and that

$$
L=K(\{s \in L \mid h(s)=0\})=F(\{s, r \in L \mid h(s)=0, g(r)=0\})=F(\{t \in L \mid f(t)=0\})
$$

Hence L is the splitting field of $f(x)$ over F and so $L \cong E$. Then

$$
[E: F]=[L: F]=[L: K][K: F] \mid m!l!=m!(n-m)!.
$$

But $m!(n-m)$! divides n ! since $\binom{n}{m}=\frac{n!}{m!(n-m)!}$ is an integer. Hence $[E: F]$ divides $n!$ as required.

Case $f(x)$ is irreducible. Let $\alpha \in E$ be a root of $f(x)$. Then $[F(\alpha): F]=\operatorname{deg}(f(x))=n$. Moreover, in $F(\alpha)$ we have $f(x)=(x-\alpha) g(x)$ where $\operatorname{deg}(g(x))=n-1$. Let L be the splitting field of $g(x)$ over $F(\alpha)$. Then $g(x)$ factors as a product of linear factors in $L[x]$ and

$$
L=F(\alpha)(\{r \in L \mid g(r)=0\})
$$

Moreover we have that $[L: F(\alpha)]$ divides $(n-1)$! by induction hypothesis. Notice that $f(x)$ factors as a product of linear factors in $L[x]$ (since $g(x)$ does so) and that

$$
L=F(\alpha)(\{r \in L \mid g(r)=0\})=F(\{r \in L \mid g(r)=0\} \cup\{\alpha\})=F(\{r \in L \mid f(r)=0\})
$$

since $\alpha \in L$. Hence L is the splitting field of $f(x)$ over $K(\alpha)$ and so $L \cong E$. Then

$$
[E: F]=[L: F]=[L: F(\alpha)][F(\alpha): F]=[L: F(\alpha)] \cdot n
$$

Since $[L: F(\alpha)$] divides $(n-1)$!, we conclude that $[E: F]$ divides n ! as required.
Problem 10. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 3 . Let E be the splitting field of $f(x)$. What are the possible values of $[E: \mathbb{Q}]$? Provide an explicit example for each such possible value.

Solution. From Problem 9 we know that $[E: \mathbb{Q}]$ divides $3!=6$. Hence $[E: \mathbb{Q}] \in\{1,2,3,6\}$.
Case $[E: \mathbb{Q}]=1$. In this case $f(x)=x-1$ is an example, since the splitting field of $f(x)$ is $E=\mathbb{Q}$.
Case $[E: \mathbb{Q}]=2$. We claim that this is impossible. Indeed, assume to a contradiction that $[E: \mathbb{Q}]=2$.
The there exists $\alpha \in E \backslash \mathbb{Q}$ which is a root of $f(x)$. Since $f(x)$ is irreducible, we have $[\mathbb{Q}(\alpha): \mathbb{Q}]=\operatorname{deg}(f(x))=$ 3. But then $\mathbb{Q} \subseteq \mathbb{Q}(\alpha) \subseteq E$ gives

$$
2=[E: \mathbb{Q}]=[E: \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha): \mathbb{Q}]=[E: \mathbb{Q}(\alpha)] \operatorname{deg}(f(x))=[E: \mathbb{Q}(\alpha)] \cdot 3 \geq 3
$$

which is a contradiction.
Case $[E: \mathbb{Q}]=3$. Our aim is to find a Galois field extension $\mathbb{Q} \subseteq L$ with $[L: \mathbb{Q}]=6$ and a normal subgroup H of $G:=\operatorname{Gal}(L / \mathbb{Q})$ such that H has order 2 . Then by $\operatorname{FTGT}(2)$ we obtain $H=\operatorname{Gal}\left(L / L_{H}\right)$, by $\operatorname{FTGT}(3)$ we obtain $\left[L: L_{H}\right]=|H|=2$, by $\operatorname{FTGT}(5)$ we obtain that $\mathbb{Q} \subseteq L_{H}$ is normal and by $\operatorname{FTGT}(6)$ we obtain $\left[L_{H}: \mathbb{Q}\right]=\frac{\operatorname{Gal}(L / \mathbb{Q})}{\operatorname{Gal}\left(L / L_{H}\right)}=\frac{[L: \mathbb{Q}]}{\left[L: L_{H}\right]}=\frac{6}{2}=3$. Moreover, in this case there exist no intermediate fields strictly between \mathbb{Q} and L_{H}. Indeed, if $\mathbb{Q} \subseteq F \subseteq L_{H}$, then

$$
3=[E: \mathbb{Q}]=\left[E: L_{H}\right]\left[L_{H}: \mathbb{Q}\right]
$$

implies that either $\left[E: L_{H}\right]=1$ or $\left[L_{H}: \mathbb{Q}\right]=1$ and so either $L_{H}=E$ or $L_{H}=\mathbb{Q}$. By Theorem 11.4 we conclude in this case that $L_{H}=\mathbb{Q}(\alpha)$ for some $\alpha \in E$. In particular, since $[E: \mathbb{Q}]<\infty$, we have that α is algebraic over \mathbb{Q} and hence the minimum polynomial $p_{\alpha}(x) \in \mathbb{Q}[x]$ exists. Now let $g \in \operatorname{Gal}\left(L_{H} / \mathbb{Q}\right)$ have order three. Then $g: \mathbb{Q}(\alpha) \rightarrow \mathbb{Q}(\alpha)$ is an isomorphism with $g(\alpha) \neq \alpha$. Then

$$
0=g\left(p_{\alpha}(\alpha)\right)=p_{\alpha}(g(\alpha))
$$

implies that $g(\alpha) \neq \alpha$ is also a root of $p_{\alpha}(x)$ and similarly $g^{2}(\alpha)$ is also a root of $p_{\alpha}(x)$. We conclude that in this case $\mathbb{Q}(\alpha)$ is the splitting field of $p_{\alpha}(x)$. Now we proceed with finding a concrete example. Recall by Example $12.13(1)$ that if $\zeta=e^{\frac{2 \pi i}{7}}$, then $\mathbb{Q}(\zeta)$ is the splitting field of $\Phi_{7}(x)=1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}$. Moreover, in this case, the Galois group $G=\operatorname{Gal}(\mathbb{Q}(\zeta): \mathbb{Q})$ is isomorphic to \mathbb{Z}_{7}^{*} and so $[\mathbb{Q}(\zeta): \mathbb{Q}]=6$. More precisely, we have that $G=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5}, \sigma_{6}\right\}$ where $\sigma_{i}(\zeta)=\zeta^{i}$. In particular, we have

$$
\sigma_{6}^{2}(\zeta)=\sigma\left(\zeta^{6}\right)=\zeta^{36}=\zeta
$$

and so $H=\left\{\sigma_{1}, \sigma_{6}\right\}$ is a subgroup of G of order 2 (notice that $\sigma_{1}=\mathrm{id}_{\mathbb{Q}(\zeta)}$. Let us compute the fixed field $\mathbb{Q}(\zeta)_{H} . \mathrm{A} \mathbb{Q}$-basis of L is given by $\left\{1, \zeta, \zeta^{2}, \zeta^{3}, \zeta^{4}, \zeta^{5}\right\}$. If $q=a+b \zeta+c \zeta^{2}+d \zeta^{3}+e \zeta^{4}+f \zeta^{5} \in \mathbb{Q}(\zeta)$, then $\sigma_{6}(q)=q$ if and only if

$$
a+b \zeta^{6}+c \zeta^{5}+d \zeta^{4}+e \zeta^{3}+f \zeta^{2}=a+b \zeta+c \zeta^{2}+d \zeta^{3}+e \zeta^{4}+f \zeta^{5}
$$

which, using $\zeta^{6}=-1-\zeta-\zeta^{2}-\zeta^{3}-\zeta^{4}-\zeta^{5}$ (which holds since ζ is a root of $\Phi_{7}(x)$), becomes equivalent to

$$
(a-b)-b \zeta+(f-b) \zeta^{2}+(e-b) \zeta^{3}+(d-b) \zeta^{4}+(c-b) \zeta^{5}=a+b \zeta+c \zeta^{2}+d \zeta^{3}+e \zeta^{4}+f \zeta^{5}
$$

By equating the coefficients of the same elements (which we can do since $\left\{1, \zeta, \zeta^{2}, \zeta^{3}, \zeta^{4}, \zeta^{5}\right\}$ is a linearly independent set), we obtain a linear system of equations with unknowns a, b, c, d, e, f. Solving this system we obtain $b=0, c=f$ and $d=e$. Hence

$$
q=a+c \zeta^{2}+d \zeta^{3}+d \zeta^{4}+c \zeta^{5}=a+c\left(\zeta^{2}+\zeta^{5}\right)+d\left(\zeta^{3}+\zeta^{4}\right)
$$

Hence

$$
\mathbb{Q}(\zeta)_{H}=\left\{a+c\left(\zeta^{2}+\zeta^{5}\right)+d\left(\zeta^{3}+\zeta^{4}\right) \mid a, c, d \in \mathbb{Q}\right\}=\mathbb{Q}\left(\zeta^{2}+\zeta^{5}, \zeta^{3}+\zeta^{4}\right)
$$

As claimed in the general case, we have $\left[\mathbb{Q}(\zeta)_{H}, \mathbb{Q}\right]=3$ since $\left[\mathbb{Q}(\zeta): \mathbb{Q}(\zeta)_{H}\right]=|H|=2$ by FTGT(3) and $[\mathbb{Q}(\zeta): \mathbb{Q}]=6$ by construction. We claim that $\mathbb{Q}\left(\zeta^{2}+\zeta^{5}, \zeta^{3}+\zeta^{4}\right)=\mathbb{Q}\left(\zeta^{2}+\zeta^{5}\right)$. Indeed, since there exist no intermediate fields between \mathbb{Q} and $\mathbb{Q}\left(\zeta^{2}+\zeta^{5}, \zeta^{3}+\zeta^{4}\right)$, it is enough to show that $\zeta^{2}+\zeta^{5}$ is not in \mathbb{Q}. To this end we compute the minimal polynomial of $\zeta^{2}+\zeta^{5}$ over \mathbb{Q}. Notice that since $\left[\mathbb{Q}\left(\zeta^{2}+\zeta^{5}, \zeta^{3}+\zeta^{4}\right): \mathbb{Q}\right]=3$, the minimal polynomial has degree at most 3 . We set $\alpha=\zeta^{2}+\zeta^{5}$ and we compute

$$
\alpha^{2}=2+\zeta^{3}+\zeta^{4}
$$

and $\alpha^{3}=\zeta+3 \alpha+\zeta^{6}$. Now we investigate if there exist $k, l, m \in \mathbb{Q}$ such that

$$
\alpha^{3}+k \alpha^{2}+l \alpha+m=0
$$

Replacing α^{3} and α^{2} and replacing $\zeta^{6}=-1-\zeta-\zeta^{2}-\zeta^{3}-\zeta^{4}-\zeta^{5}$, the above equation becomes

$$
(m+2 k-1)+(2+l) \zeta^{2}+(k-1) \zeta^{3}+(k-1) \zeta^{4}+(2+l) \zeta^{5}=0
$$

Again equating the coefficients gives $k=1, l=-2$ and $m=-1$. Hence ζ is a root of $f(x)=x^{3}+x^{2}-2 x-1 \in$ $\mathbb{Q}[x]$. Notice that this polynomial has no roots in \mathbb{Z} (since the only possible integer roots are divisors of the constant term 1 , and neither 1 nor -1 is a root) and so it has no roots in \mathbb{Q} by Theorem 3.7. Hence $\alpha \notin \mathbb{Q}$ and so $\mathbb{Q}(\zeta)_{H}=\mathbb{Q}(\alpha)$. Moreover, since $f(x)$ is of degree 3, it follows that it is irreducible over \mathbb{Q}. Now notice that if $K=\operatorname{Gal}\left(\mathbb{Q}(\zeta)_{H} / \mathbb{Q}\right)$, then by $\operatorname{FTGT}(6)$ we have

$$
K=\operatorname{Gal}\left(\mathbb{Q}(\zeta)_{H} / \mathbb{Q}\right) \cong \operatorname{Gal}(\mathbb{Q}(\zeta): \mathbb{Q}) / \operatorname{Gal}\left(\mathbb{Q}(\zeta): \mathbb{Q}(\zeta)_{H}\right)=G / H
$$

has order 3. Given an element of $g \in K$ of order $3, g(\alpha)$ and $g\left(\alpha^{2}\right)$ are both roots of $f(x)$ different than α and inside $\mathbb{Q}(\alpha)$. Hence $\mathbb{Q}(\alpha)$ is a splitting field of $f(x)=x^{3}+x^{2}-2 x-1$ and $[\mathbb{Q}(\alpha): \mathbb{Q}]=3$, as required. (For an explicit $g \in K$ we may pick σ_{3}, so that $\sigma_{3}\left(\zeta^{2}+\zeta^{5}\right)=\zeta+\zeta^{6}, \sigma_{3}\left(\zeta+\zeta^{6}\right)=\zeta^{3}+\zeta^{4}$ and $\sigma_{3}\left(\zeta^{3}+\zeta^{4}\right)=\zeta^{2}+\zeta^{5}$, showing that the roots of $f(x)$ are $\zeta^{2}+\zeta^{5}, \zeta+\zeta^{6}$ and $\zeta^{3}+\zeta^{4}$.

Case $[E: \mathbb{Q}]=6$. For an example of this case let $f(x)=x^{3}-2$. Then if E is the splitting field of $f(x)$, we have $[E: \mathbb{Q}]=6$ as we computed in Example 7.5(1).

