Galois theory - Problem Set 4

To be solved on Monday 20.03

Problem 1. (Exercise 17.1.1 in the book.) Let E = Q(+/2,w) be an extension field of Q, where w? = 1,
w # 1. For each of the following subgroups S; of the group G(E/Q) find FEg,.

(a) S1 = {1,032}, where o9 is defined by 02(V/2) = v/2w? and o3(w) = w?.

(b) Sy = {1,03}, where o3 is defined by o3(V/2) = V2w and o3(w) = w?.

(c)

(d) Sy = {1,05,06} where o is defined by o5(/2) = /2w and o5(w) = w and og is defined by o¢(V/2) =
V2w? and o6 (w) = w.

S3 = {1,04}, where o4 is defined by o4(V/2) = V/2 and o4(w) = w?.

Problem 2. (Exercise 17.2.1 in the book.) Find the Galois groups G(K/Q) of the following extensions K
of Q:

(a) K =Q(V3,V5).
(b) K = Q(«), where o = cos2mw/3 + isin27/3.
(c) K is the splitting field of z* — 322 + 4 € Q[z].

Problem 3. (Exercise 17.2.3 in the book.) Let u € R and let Q(u) be a normal extension of Q such that
[Q(u) : Q] = 2™, where m > 0. Show that there exist intermediate fields K; such that

Ko=QCK  CKyC- CKp=0Q(u),
where [K; : K;—1] = 2. (Hint: Sylow’s first theorem.)
Problem 4. (Exam May 2017, Problem 3(c)-(e).) Let E be the splitting field of f(z) = 27 —2 € Q[z] over
211
Q, that is £ = Q(w, V/2) where w = e 17 . (see Problem 7 in Problem Set 3).

(a) Let G = Gal(E/Q) be the Galois group of E over Q. Show that there exists an intermediate field L,
Q C L C E, such that L corresponds by the Galois correspondence to a normal subgroup H of G of
order 17. Explain your argument.

(b) Show that there exists an intermediate field M, Q C M C E, such that [M : Q] = 34. [Hint: Use
Sylov’s Theorem.]

(¢) Show that G is non-abelian. [Hint: G abelian implies that all subgroups are normal.]
Solution.

(a) Let L = Q(w). Then w is a root of 217 — 1 = (# — 1)®17(z). Moreover, the roots of ®17(x) are w! for
1 < 16. Hence Q(w) is the splitting field of ®17(x) € Q[x]. Therefore the field extension Q C Q(w) is
normal. By FTGT(5) we conclude H := Gal(E/L) is a normal subgroup of Gal(E/Q). On the other
hand, we have that the minimal polynomial of w over Q is ®;7(x) by Example 3.11(2). Therefore

[L: Q) = [Qw) : Q] = deg(®17(x)) = 16.



By Problem 7 in Problem Set 3 we have that [E : Q] = 17 - 16. Hence
17-16=[E:Q]=[E: L][L:Q]=[E:L]-16
implies that [E : L] = 17. Then we obtain by FTGT(3) that
Gal(E/L)| = [E: L] = 17,
as required.

(b) By FTGT(3) we have that
|Gal(E/Q)| = [E: Q] = 17- 16 = 272.
Since 8 = 23 divides 272, it follows by Sylow’s first theorem (Theorem 8.4.2 in the book) that there exists

a subgroup F < Gal(E/Q) with |F| = 8. Let M = Er so that Q C M C E. Then F = Gal(E/M) by
FTGT(2). By FTGT(3) we obtain

[E: M) = |Gal(E/M)| = |F| = 8.

But then
272=[E:Q|=[E: M][M:Q]=8-[M:Q)

implies [M : Q] = 34, as required.

(c¢) Consider the field extension
QCQ(V2) CE.

Then the polynomial f(z) = 27 — 2 is irreducible over Q (Eisenstein for p = 2) and has a root in
Q( V2. However, it does not have all of its roots in Q( ¥/2), since w ¢ Q( ¥/2). By Theorem 8.5 we
conclude that Q C Q( ¥/2) is not a normal extension. By FTGT(5) we conclude that Gal(E/Q( V/2))
is not a normal subgroup of G = Gal(E/Q). Using the hint we conclude that G is not an abelian

group.

Problem 5. (Exam May 2017, Problem 5, Exam May 2013, Problem 6.) Let N be a Galois extension of
K such that G(N/K) is abelian. Let a € N and let p(z) € K[z] be the minimal polynomial of « over K.
Show that all roots of p(x) lie in K («).

Solution. By Theorem 8.5 it is enough to show that K C K(«) is a normal field extension. We have
field extensions K C K(a) C N where K C N is Galois by assumption. Let G = Gal(N/K) and H =
Gal(N/K(a)). In particular, H is a subgroup of G. Since G is abelian by assumption, we conclude that H
is a normal subgroup of G (since all subgroups of abelian groups are normal). By FTGT(5) we conclude
that K C K(«), as required.

Problem 6. (Exam June 2015, Problem 5.) Let E = F (a1, a2) be a Galois extension of a field F', and let
K; = F(ay) and Ko = F(ag). Consider the subgroups Hy = G(E/K;) and Hy = G(E/K>) of the Galois
group G(E/F).

(a) Show that Hy N Hy = {e}, that is, the intersection of Hy with Hy is the trivial subgroup of G(E/F).

(b) Suppose that each element g1 € H; maps Ks to Ky, and that each element go € Hy maps K to Kj.
Show that g1go = gog1 for all g1 € Hy, g2 € Hs.

Solution.

(a) Let g € Hy N Hy. Then g € Gal(E/K;) and so g|K1 = idg,. In particular, g(c1) = ay. Similarly, we
have g(as) = as. Moreover, g‘F = idp since F C K; and so g(z) = « for every « € F. Consider the

field extensions
F Q F(Oél) g F(Oél,ag).



Since F' C F(a1,as) is a Galois extension, it is in particular a finite field extension. Hence a basis of
F(ay) over F is given by {1,aq,...,a{} for some d > 0 and a basis of F(ay,az) over F(a;) is given
by {1, as,...,as} for some s > 0. Hence a basis of F(ay, az) over F is given by

B={aia}|0<i<d,0<j<s}.

But g(a1) = a1 and g(as) = as implies that g’B = idp since ¢ is a ring homomorphism. It follows
that g : F(a1,a2) = F(aq,az) is the identity map. Since g € Hy N Hy was arbitrary, we conclude that
Hy N Hy = {idg}, as required.

Let @ € E = F(ay, as). It is enough to show that g;g2(a) = gag1 () for any o € E. Since 91|F =idp
and gg|F = idp, for every z € E we have

9192(7) = giidp(7) = g1(z) = idr(z) = =
and similarly g2g1(z) = z. Hence g1g2(x) = g291(x) for every x € F. Moreover, since g; Fla) =

idp(a,), we have
g291(01) = g2idp(a,) (1) = ga(aa).

On the other hand, since go(K;) C K3, we have that go(a1) € K1 = F(ay). Therefore
g192(c1) = idp(a,)g2(a1) = g2 ().

Hence we have shown that gog1(a1) = ¢g192(aq). Similarly we have gog1(as) = g192(az). Therefore,
and since g1g2 and gog; are ring homomorphisms, we see that g; gg| 5= 9201 | p Where

B={ala} |0<i<d0<j<s}

is an F-basis of E as in part (a). Since g1g2 and gog1 agree on both F' and an F-basis of E, it readily
follows that g1g2(a) = gag1 () for every a € E, as required.

Problem 7. (Exam June 2015, Problem 6.) Let F' C E be a Galois extension of degree [E : F.

(a)

(b)

Is it possible that [E : F| = 4 and that there are precisely two proper intermediate fields between E
and F7?

Suppose that [E : F] = 6 and that F is the splitting field of a polynomial of degree 3 (and a Galois
extension of F.) How many proper intermediate fields are there between E and F?

Solution.

(a)

Assume [E : F] = 4. Since E C F is Galois, the Galois group G(E/F') has order 4. Hence either
G(E/F)=Z4or G(E/F) = Zy X Zy. The group Z4 has precisely one proper subgroup, namely {0, 2}.
The group Zg X Zo has precisely three proper subgroups, namely {(0,0),(0,1)}, {(0,0),(1,0)} and
{(0,0),(1,1)}. By the FTGT it follows that there are either one or three proper intermediate fields
between E' and F' and so the answer is no.

Let f(z) € Flz] be the polynomial of degree 3 for which E is a splitting field. By the FTGT we have
that G(E/F) has order [E : F] = 6. Let a € E be a root of f(x). We claim that a ¢ F. Indeed, if
a € F, then f(x) = (x — a)p(x) where p(x) € F[z] has degree 2. In particular, F is the splitting field
of p(z). Then let 5,~ be the roots of p(x) in E. Then p(z) is divided by  — 8 in F(3), implying that
v € F(B). Hence E = F(5,7v) = F(f) and so

6= [E: F] = [F(B) : F] < deg(p) =2,

a contradiction.

Hence no root of f(x) is in F. Let aj,as, a3 € E be the roots of f(z). Then F C F(«;) is a proper
field extension for each i € {1,2,3}. We claim that F(«;) C F is also a proper field extension for each
i € {1,2,3}. Indeed, we have

[Flew) : F] < deg(f(x) =3 < 6= [E: F],



and so F = F(«;) is impossible. We conclude that F(«1), F(az2) and F(«a3) are three proper inter-
mediate fields between E and F. Since [G(E/F)] = 6, we have by the FTGT that G(E/F) = S3 or
G(E/F) = Zg. Since Zg has only 2 proper subgroups, we conclude that G(E/F) = S3. It remains to
find how many proper subgroups S5 has. Since S5 has order 6, any nontrivial proper subgroup of S5 has
order 2 or 3 and so its cyclic. Hence if S5 = {id, (12), (13), (23), (123), (132)}, then the subgroups are
{id, (12)}, {id, (13)}, {id, (23)} and {id, (123), (132)}. Since there are four proper nontrivial subgroups
of S3, by the FTGT it follows that there are three proper intermediate fields between F and E.

Problem 8. (Exam June 2015, Problem 7.) Let f(z) = 2° — 2 — 1 € Zs[z] and E = Z5(B), where j3 is a
root of f(z).

(a) Show that 8+ 1, 8+ 2, 5+ 3, B+ 4 are also roots of f(x). Deduce that 3 & Zs.

(b) Define 0 € G(E/Zs) by o(8) = 8+ 1. Find the order of ¢ in G(E/Zs), and describe the action of o
on the roots of f(z).

(¢) Use the above and the FTGT to deduce that f(z) is irreducible, and that [E : Zs] = 5.
Solution.

(a) Since char(E) = 5, we have that (a + b)> = a® + b® for all a,b € E. Moreover, by Fermat’s little
theorem we have k® = k for all k € Zs. Hence for k € {1,2,3,4} we have

FB+k)=B+k) = (B+k) 1=+, -f-k-1=(8-F-1)+k" —k=[f(B)=0.

We conclude that 8+ k is a root of f for k € {1,2,3,4}. Assume to a contradiction that 8 € Zs. Since
f(0) = =1 # 0, we conclude that 8 € {1,2,3,4}. But then 5+ k is a root of f(z) for all k € {1,2,3,4}
and since § + k = 0 for some k € {1,2,3,4} we obtain a contradiction (again, because 0 is not a root

of f(x).

(b) We have o(k) = k for all k € Zs, since 0 € G(E/Zs). Since o is a ring homomorphism, we have
o(B+k)=0(B)+0o(k)=08+kforall ke {1,2,3,4}. Then

BrosB+1rB+2+-5B+3+B+4+ B+5=7

and so the order of o is 5.
If B € Zs, then either 5 =0 or 5 € {1,2,3,4}.

(¢) The extension Zs C E = Zs(f) is finite since S is algebraic over Zs, is separable since Zs is a finite
field and is normal since it is the splitting field of f(z) over Zs. Hence Zs C E is a Galois extension.
Since f() = 0, we conclude that [E : Zs] < 5. On the other hand, since o € G(E/Zs) has order 5, we
conclude that 5 < |G(E/Zs)|. By FTGT(3) we have that |G(E/Zs)| = [E : Zs]. Hence we have

5<|G(E/Zs)| = |E : Zs] <5,

from which we conclude that [E : Zs] = 5. We claim that f(z) is the minimal polynomial of 3 over Zs.
Indeed, if that is not the case, and since f(/) = 0 and f(x) is monic, we conclude that there exists an
irreducible polynomial g(z) with deg(g) < 5 and g(3) = 0. But then

5=[E:Zs)=[Z5(B) : Zs] = deg(g) = 4,

and we obtain a contradiction.

Extra problems

The following problems may be a bit more challenging, in case you feel like you need something more.



Problem 9. Let F be a field and f(z) € F|[x] be a polynomial of degree n > 1. Let E be the splitting field
of f(x). Show that [E : F] divides n!.

Solution. We use induction on n > 1. If n =1 then f(x) = a + bz for some a,b € F and so £ = F. Then
[E: F]=1dividesn! =1 =1.

Suppose now that the claim is true for any polynomial of degree strictly less than n and we show that
it holds for f(x) € F[z] of degree n. We consider the cases where f(z) is reducible and f(z) is irreducible
separately.

Case f(x) is reducible. Then f(z) = g(x)h(z) for some g(z), h(z) € F[z] with deg(g(z)) =1 > 1 and
deg(h(z)) =m > 1. Then n =1+m and so [,m < n. Let K be the splitting field of g(x) over F. Then g(z)
factors as a product of linear factors in K[z] and

K=F({reK|g(r)=0}).

Moreover, we have that [E : K] divides I! by induction hypothesis. Notice that h(x) € K[z]. Let L be the
splitting field of h(x) over K. Then h(x) factors as a product of linear factors in L[z] and

L=K({seL|h(s)=0}).

Again by induction hypothesis we have that [L : K] divides m!. Now notice that f(z) factors as a product
of linear factors in L[z] (since g(z) and h(z) do so) and that

L=K({seL|h(s)=0})=F({s,reL|h(s)=0,9(r)=0}) = F({t € L | f(t) =0}).
Hence L is the splitting field of f(x) over F' and so L = E. Then
[E:F|=[L:F|=I[L:K]|K:F]|mll=ml(n-m)

But m!(n —m)! divides n! since () = iy is an integer. Hence [E : F] divides n! as required.

Case f(z) is irreducible. Let ao € E be a root of f(x). Then [F(«) : F] = deg(f(x)) = n. Moreover, in
F(a) we have f(z) = (z — a)g(x) where deg(g(z)) = n — 1. Let L be the splitting field of g(z) over F(«).
Then g(x) factors as a product of linear factors in L[z] and

L=F(a)({reL][g(r)=0}).

Moreover we have that [L : F(«)] divides (n — 1)! by induction hypothesis. Notice that f(z) factors as a
product of linear factors in L[x] (since g(x) does so) and that

L=F){reLlg(r)=0})=F{reL|gr)=0}tu{a})=F({relL]|f(r)=0}),
since « € L. Hence L is the splitting field of f(x) over K(«) and so L = E. Then
[E:F)=[L:F]=[L: F(a)][F(a): F]=[L: F(a)] n.
Since [L : F(a)] divides (n — 1)!, we conclude that [E : F| divides n! as required.

Problem 10. Let f(x) € Q[z] be an irreducible polynomial of degree 3. Let E be the splitting field of f(z).
What are the possible values of [E : Q]? Provide an explicit example for each such possible value.

Solution. From Problem 9 we know that [E : Q] divides 3! = 6. Hence [E : Q] € {1,2,3,6}.
Case [E : Q] = 1. In this case f(z) =z — 1 is an example, since the splitting field of f(z) is F = Q.
Case [E : Q] = 2. We claim that this is impossible. Indeed, assume to a contradiction that [E : Q] = 2.
The there exists & € E\Q which is a root of f(z). Since f(z) is irreducible, we have [Q(«) : Q] = deg(f(x)) =
3. But then Q C Q(«) C E gives

2=[E:Q=[E:Qa)][Q(a): Q] = [E: Q(a)] deg(f(x)) = [E: Q)] - 3 = 3,

which is a contradiction.



Case [E : Q] = 3. Our aim is to find a Galois field extension Q C L with [L : Q] = 6 and a normal
subgroup H of G := Gal(L/Q) such that H has order 2. Then by FTGT(2) we obtain H = Gal(L/Ly), by
FTGT(3) we obtain [L : Ly] = |H| = 2, by FTGT(5) we obtain that Q@ C Ly is normal and by FTGT(6)
we obtain [Ly : Q] = GG;(I(LL/L%)) =1 [LLL%] = g = 3. Moreover, in this case there exist no intermediate fields
strictly between Q and Ly . Indeed, if Q C F C Ly, then

3=[E:Q=[E: Lu|[Lu :Q

implies that either [F : Ly] = 1 or [Ly : Q] = 1 and so either Ly = E or Ly = Q. By Theorem 11.4 we
conclude in this case that Ly = Q(«) for some o € E. In particular, since [E : Q] < oo, we have that «
is algebraic over Q and hence the minimum polynomial p,(z) € Q[z] exists. Now let g € Gal(Ly/Q) have
order three. Then g : Q(«) — Q(«) is an isomorphism with g(a) # a. Then

0 = g(pa(a)) = palg(a))

implies that g(a) # « is also a root of p,(x) and similarly g2(a) is also a root of p,(x). We conclude that
in this case Q(a) is the splitting field of p,(x). Now we proceed with finding a concrete example. Recall by

2mi
Example 12.13(1) that if ( = e 7 , then Q(() is the splitting field of ®7(x) = 1+ z + 22 + 23 + 2 + 2° + 2°.
Moreover, in this case, the Galois group G = Gal(Q(¢) : Q) is isomorphic to Z% and so [Q(¢) : Q] = 6. More
precisely, we have that G = {01, 02, 03,04, 05,06} where 0;(¢) = ¢*. In particular, we have

03(¢) = a(¢®) =¢* =¢,

and so H = {01,06} is a subgroup of G of order 2 (notice that oy = idg(¢). Let us compute the fixed field
QC)n- A Q-basis of L is given by {1,¢,¢2,¢%, ¢4, ¢} If g = a+ b + (% + dC® + ¢t + fC° € Q(C), then
o6(q) = q if and only if

a+bCC+cC®+dCt + e+ fCP=a+bC+ceC?+dC + et + fC°,
which, using (¢ = —1 — ¢ — ¢% — ¢ — ¢* — ¢° (which holds since ( is a root of ®7(x)), becomes equivalent to
(@a=b) = b+ (f = 1)+ (e =b)¢* + (d = b)C* + (¢ = 0)C° = a+ b + ¢ +d¢° + et + fC°.

By equating the coefficients of the same elements (which we can do since {1,¢,¢2,¢3,¢%, (%} is a linearly
independent set), we obtain a linear system of equations with unknowns a,b,c,d, e, f. Solving this system
we obtain b =0, ¢ = f and d = e. Hence

g=a+cC+de+dc* +c® =a+c(C2+ ) +d(C+ Y.

Hence
Q) ={a+c(C®+ ) +d(P+¢Y) [ a,e,d € QF = QP+ ¢, ¢+ ¢Y).

As claimed in the general case, we have [Q(¢)x, Q] = 3 since [Q(¢) : Q({)u] = |H| = 2 by FTGT(3) and
[Q(¢) : Q] = 6 by construction. We claim that Q(¢? +¢°, (3 +¢*) = Q(¢% + ¢%). Indeed, since there exist no
intermediate fields between Q and Q(¢2 + ¢®, (3 + (%), it is enough to show that (2 + ¢® is not in Q. To this
end we compute the minimal polynomial of (? 4 ¢® over Q. Notice that since [Q(¢? + ¢°,¢3 +¢*) : Q] = 3,
the minimal polynomial has degree at most 3. We set o = ¢? + ¢° and we compute

o’ =2+ + ¢,
and o® = ¢ + 3a + (5. Now we investigate if there exist k,I,m € Q such that
o+ ko’ +la+m=0.
Replacing o® and o2 and replacing (6 = —1 — ¢ — ¢2 — (3 — ¢* — ¢?, the above equation becomes

(m4+2k-1)4+Q2+DC+k-1DC+E-1DC+©2+1D)C =0.



Again equating the coefficients gives k = 1, = —2 and m = —1. Hence ( is aroot of f(z) = 2 +2%2—-22r—1 €
Q[z]. Notice that this polynomial has no roots in Z (since the only possible integer roots are divisors of the
constant term 1, and neither 1 nor —1 is a root) and so it has no roots in Q by Theorem 3.7. Hence « ¢ Q
and so Q(Q)g = Q(«). Moreover, since f(z) is of degree 3, it follows that it is irreducible over Q. Now
notice that if K = Gal(Q(¢)x/Q), then by FTGT(6) we have

K = Gal(Q(¢)r/Q) = Gal(Q(¢) : Q)/ Gal(Q(C) : Q(Q)n) = G/H

has order 3. Given an element of g € K of order 3, g(a) and g(a?) are both roots of f(z) different than
a and inside Q(a). Hence Q(«) is a splitting field of f(z) = 23 + 2?2 — 22 — 1 and [Q(a) : Q] = 3, as
required. (For an explicit g € K we may pick o3, so that o3(¢% + ¢%) = ¢ + ¢, 03(¢C +¢5) = ¢ + ¢* and
03(¢3 + ¢*) = (% + ¢, showing that the roots of f(x) are (2 +¢°, ¢+ ¢% and ¢ + ¢*.

Case [E : Q] = 6. For an example of this case let f(z) = 23 — 2. Then if E is the splitting field of f(z),
we have [F : Q] = 6 as we computed in Example 7.5(1).



