
Galois theory - Problem Set 4

To be solved on Monday 20.03

Problem 1. (Exercise 17.1.1 in the book.) Let E = Q( 3
√
2, ω) be an extension field of Q, where ω3 = 1,

ω ̸= 1. For each of the following subgroups Si of the group G(E/Q) find ESi .

(a) S1 = {1, σ2}, where σ2 is defined by σ2(
3
√
2) = 3

√
2ω2 and σ2(ω) = ω2.

(b) S2 = {1, σ3}, where σ3 is defined by σ3(
3
√
2) = 3

√
2ω and σ3(ω) = ω2.

(c) S3 = {1, σ4}, where σ4 is defined by σ4(
3
√
2) = 3

√
2 and σ4(ω) = ω2.

(d) S4 = {1, σ5, σ6} where σ5 is defined by σ5(
3
√
2) = 3

√
2ω and σ5(ω) = ω and σ6 is defined by σ6(

3
√
2) =

3
√
2ω2 and σ6(ω) = ω.

Problem 2. (Exercise 17.2.1 in the book.) Find the Galois groups G(K/Q) of the following extensions K
of Q:

(a) K = Q(
√
3,
√
5).

(b) K = Q(α), where α = cos 2π/3 + i sin 2π/3.

(c) K is the splitting field of x4 − 3x2 + 4 ∈ Q[x].

Problem 3. (Exercise 17.2.3 in the book.) Let u ∈ R and let Q(u) be a normal extension of Q such that
[Q(u) : Q] = 2m, where m ≥ 0. Show that there exist intermediate fields Ki such that

K0 = Q ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Km = Q(u),

where [Ki : Ki−1] = 2. (Hint: Sylow’s first theorem.)

Problem 4. (Exam May 2017, Problem 3(c)-(e).) Let E be the splitting field of f(x) = x17−2 ∈ Q[x] over

Q, that is E = Q(ω, 17
√
2) where ω = e

2πi
17 . (see Problem 7 in Problem Set 3).

(a) Let G = Gal(E/Q) be the Galois group of E over Q. Show that there exists an intermediate field L,
Q ⊆ L ⊆ E, such that L corresponds by the Galois correspondence to a normal subgroup H of G of
order 17. Explain your argument.

(b) Show that there exists an intermediate field M , Q ⊆ M ⊆ E, such that [M : Q] = 34. [Hint : Use
Sylov’s Theorem.]

(c) Show that G is non-abelian. [Hint : G abelian implies that all subgroups are normal.]

Solution.

(a) Let L = Q(ω). Then ω is a root of x17 − 1 = (x− 1)Φ17(x). Moreover, the roots of Φ17(x) are ωi for
1 ≤ 16. Hence Q(ω) is the splitting field of Φ17(x) ∈ Q[x]. Therefore the field extension Q ⊆ Q(ω) is
normal. By FTGT(5) we conclude H := Gal(E/L) is a normal subgroup of Gal(E/Q). On the other
hand, we have that the minimal polynomial of ω over Q is Φ17(x) by Example 3.11(2). Therefore

[L : Q] = [Q(ω) : Q] = deg(Φ17(x)) = 16.
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By Problem 7 in Problem Set 3 we have that [E : Q] = 17 · 16. Hence

17 · 16 = [E : Q] = [E : L][L : Q] = [E : L] · 16

implies that [E : L] = 17. Then we obtain by FTGT(3) that

|Gal(E/L)| = [E : L] = 17,

as required.

(b) By FTGT(3) we have that
|Gal(E/Q)| = [E : Q] = 17 · 16 = 272.

Since 8 = 23 divides 272, it follows by Sylow’s first theorem (Theorem 8.4.2 in the book) that there exists
a subgroup F < Gal(E/Q) with |F | = 8. Let M = EF so that Q ⊆ M ⊆ E. Then F = Gal(E/M) by
FTGT(2). By FTGT(3) we obtain

[E : M ] = |Gal(E/M)| = |F | = 8.

But then
272 = [E : Q] = [E : M ][M : Q] = 8 · [M : Q]

implies [M : Q] = 34, as required.

(c) Consider the field extension

Q ⊆ Q(
17
√
2) ⊆ E.

Then the polynomial f(x) = x17 − 2 is irreducible over Q (Eisenstein for p = 2) and has a root in
Q( 17

√
2. However, it does not have all of its roots in Q( 17

√
2), since ω ̸∈ Q( 17

√
2). By Theorem 8.5 we

conclude that Q ⊆ Q( 17
√
2) is not a normal extension. By FTGT(5) we conclude that Gal(E/Q( 17

√
2))

is not a normal subgroup of G = Gal(E/Q). Using the hint we conclude that G is not an abelian
group.

Problem 5. (Exam May 2017, Problem 5, Exam May 2013, Problem 6.) Let N be a Galois extension of
K such that G(N/K) is abelian. Let α ∈ N and let p(x) ∈ K[x] be the minimal polynomial of α over K.
Show that all roots of p(x) lie in K(α).

Solution. By Theorem 8.5 it is enough to show that K ⊆ K(α) is a normal field extension. We have
field extensions K ⊆ K(α) ⊆ N where K ⊆ N is Galois by assumption. Let G = Gal(N/K) and H =
Gal(N/K(α)). In particular, H is a subgroup of G. Since G is abelian by assumption, we conclude that H
is a normal subgroup of G (since all subgroups of abelian groups are normal). By FTGT(5) we conclude
that K ⊆ K(α), as required.

Problem 6. (Exam June 2015, Problem 5.) Let E = F (α1, α2) be a Galois extension of a field F , and let
K1 = F (α1) and K2 = F (α2). Consider the subgroups H1 = G(E/K1) and H2 = G(E/K2) of the Galois
group G(E/F ).

(a) Show that H1 ∩H2 = {e}, that is, the intersection of H1 with H2 is the trivial subgroup of G(E/F ).

(b) Suppose that each element g1 ∈ H1 maps K2 to K2, and that each element g2 ∈ H2 maps K1 to K1.
Show that g1g2 = g2g1 for all g1 ∈ H1, g2 ∈ H2.

Solution.

(a) Let g ∈ H1 ∩H2. Then g ∈ Gal(E/K1) and so g
∣∣
K1

= idK1
. In particular, g(α1) = α1. Similarly, we

have g(α2) = α2. Moreover, g
∣∣
F
= idF since F ⊆ K1 and so g(x) = x for every x ∈ F . Consider the

field extensions
F ⊆ F (α1) ⊆ F (α1, α2).
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Since F ⊆ F (α1, α2) is a Galois extension, it is in particular a finite field extension. Hence a basis of
F (α1) over F is given by {1, α1, . . . , α

d
1} for some d ≥ 0 and a basis of F (α1, α2) over F (α1) is given

by {1, α2, . . . , α
s
2} for some s ≥ 0. Hence a basis of F (α1, α2) over F is given by

B = {αi
1α

j
2 | 0 ≤ i ≤ d, 0 ≤ j ≤ s}.

But g(α1) = α1 and g(α2) = α2 implies that g
∣∣
B

= idB since g is a ring homomorphism. It follows
that g : F (α1, α2) → F (α1, α2) is the identity map. Since g ∈ H1 ∩H2 was arbitrary, we conclude that
H1 ∩H2 = {idE}, as required.

(b) Let α ∈ E = F (α1, α2). It is enough to show that g1g2(α) = g2g1(α) for any α ∈ E. Since g1
∣∣
F
= idF

and g2
∣∣
F
= idF , for every x ∈ E we have

g1g2(x) = g1idF (x) = g1(x) = idF (x) = x

and similarly g2g1(x) = x. Hence g1g2(x) = g2g1(x) for every x ∈ F . Moreover, since g1
∣∣
F (α1)

=

idF (α1), we have
g2g1(α1) = g2idF (α1)(α1) = g2(α1).

On the other hand, since g2(K1) ⊆ K1, we have that g2(α1) ∈ K1 = F (α1). Therefore

g1g2(α1) = idF (α1)g2(α1) = g2(α1).

Hence we have shown that g2g1(α1) = g1g2(α1). Similarly we have g2g1(α2) = g1g2(α2). Therefore,
and since g1g2 and g2g1 are ring homomorphisms, we see that g1g2

∣∣
B
= g2g1

∣∣
B

where

B = {αi
1α

j
2 | 0 ≤ i ≤ d, 0 ≤ j ≤ s}.

is an F -basis of E as in part (a). Since g1g2 and g2g1 agree on both F and an F -basis of E, it readily
follows that g1g2(α) = g2g1(α) for every α ∈ E, as required.

Problem 7. (Exam June 2015, Problem 6.) Let F ⊆ E be a Galois extension of degree [E : F ].

(a) Is it possible that [E : F ] = 4 and that there are precisely two proper intermediate fields between E
and F?

(b) Suppose that [E : F ] = 6 and that E is the splitting field of a polynomial of degree 3 (and a Galois
extension of F .) How many proper intermediate fields are there between E and F?

Solution.

(a) Assume [E : F ] = 4. Since E ⊆ F is Galois, the Galois group G(E/F ) has order 4. Hence either
G(E/F ) ∼= Z4 or G(E/F ) ∼= Z2 ×Z2. The group Z4 has precisely one proper subgroup, namely {0, 2}.
The group Z2 × Z2 has precisely three proper subgroups, namely {(0, 0), (0, 1)}, {(0, 0), (1, 0)} and
{(0, 0), (1, 1)}. By the FTGT it follows that there are either one or three proper intermediate fields
between E and F and so the answer is no.

(b) Let f(x) ∈ F [x] be the polynomial of degree 3 for which E is a splitting field. By the FTGT we have
that G(E/F ) has order [E : F ] = 6. Let α ∈ E be a root of f(x). We claim that α ̸∈ F . Indeed, if
α ∈ F , then f(x) = (x− α)p(x) where p(x) ∈ F [x] has degree 2. In particular, E is the splitting field
of p(x). Then let β, γ be the roots of p(x) in E. Then p(x) is divided by x− β in F (β), implying that
γ ∈ F (β). Hence E = F (β, γ) = F (β) and so

6 = [E : F ] = [F (β) : F ] ≤ deg(p) = 2,

a contradiction.

Hence no root of f(x) is in F . Let α1, α2, α3 ∈ E be the roots of f(x). Then F ⊆ F (αi) is a proper
field extension for each i ∈ {1, 2, 3}. We claim that F (αi) ⊆ E is also a proper field extension for each
i ∈ {1, 2, 3}. Indeed, we have

[F (αi) : F ] ≤ deg(f(x)) = 3 < 6 = [E : F ],
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and so E = F (αi) is impossible. We conclude that F (α1), F (α2) and F (α3) are three proper inter-
mediate fields between E and F . Since [G(E/F )] = 6, we have by the FTGT that G(E/F ) = S3 or
G(E/F ) = Z6. Since Z6 has only 2 proper subgroups, we conclude that G(E/F ) = S3. It remains to
find how many proper subgroups S3 has. Since S3 has order 6, any nontrivial proper subgroup of S3 has
order 2 or 3 and so its cyclic. Hence if S3 = {id, (12), (13), (23), (123), (132)}, then the subgroups are
{id, (12)}, {id, (13)}, {id, (23)} and {id, (123), (132)}. Since there are four proper nontrivial subgroups
of S3, by the FTGT it follows that there are three proper intermediate fields between F and E.

Problem 8. (Exam June 2015, Problem 7.) Let f(x) = x5 − x − 1 ∈ Z5[x] and E = Z5(β), where β is a
root of f(x).

(a) Show that β + 1, β + 2, β + 3, β + 4 are also roots of f(x). Deduce that β ̸∈ Z5.

(b) Define σ ∈ G(E/Z5) by σ(β) = β + 1. Find the order of σ in G(E/Z5), and describe the action of σ
on the roots of f(x).

(c) Use the above and the FTGT to deduce that f(x) is irreducible, and that [E : Z5] = 5.

Solution.

(a) Since char(E) = 5, we have that (a + b)5 = a5 + b5 for all a, b ∈ E. Moreover, by Fermat’s little
theorem we have k5 = k for all k ∈ Z5. Hence for k ∈ {1, 2, 3, 4} we have

f(β + k) = (β + k)5 − (β + k)− 1 = β5 + k5 − β − k − 1 = (β5 − β − 1) + k5 − k = f(β) = 0.

We conclude that β+ k is a root of f for k ∈ {1, 2, 3, 4}. Assume to a contradiction that β ∈ Z5. Since
f(0) = −1 ̸= 0, we conclude that β ∈ {1, 2, 3, 4}. But then β+ k is a root of f(x) for all k ∈ {1, 2, 3, 4}
and since β + k = 0 for some k ∈ {1, 2, 3, 4} we obtain a contradiction (again, because 0 is not a root
of f(x).)

(b) We have σ(k) = k for all k ∈ Z5, since σ ∈ G(E/Z5). Since σ is a ring homomorphism, we have
σ(β + k) = σ(β) + σ(k) = β + k for all k ∈ {1, 2, 3, 4}. Then

β
σ7−→ β + 1

σ7−→ β + 2
σ7−→ β + 3

σ7−→ β + 4
σ7−→ β + 5 = β

and so the order of σ is 5.

If β ∈ Z5, then either β = 0 or β ∈ {1, 2, 3, 4}.

(c) The extension Z5 ⊆ E = Z5(β) is finite since β is algebraic over Z5, is separable since Z5 is a finite
field and is normal since it is the splitting field of f(x) over Z5. Hence Z5 ⊆ E is a Galois extension.
Since f(β) = 0, we conclude that [E : Z5] ≤ 5. On the other hand, since σ ∈ G(E/Z5) has order 5, we
conclude that 5 ≤ |G(E/Z5)|. By FTGT(3) we have that |G(E/Z5)| = [E : Z5]. Hence we have

5 ≤ |G(E/Z5)| = [E : Z5] ≤ 5,

from which we conclude that [E : Z5] = 5. We claim that f(x) is the minimal polynomial of β over Z5.
Indeed, if that is not the case, and since f(β) = 0 and f(x) is monic, we conclude that there exists an
irreducible polynomial g(x) with deg(g) < 5 and g(β) = 0. But then

5 = [E : Z5] = [Z5(β) : Z5] = deg(g) = 4,

and we obtain a contradiction.

Extra problems

The following problems may be a bit more challenging, in case you feel like you need something more.
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Problem 9. Let F be a field and f(x) ∈ F [x] be a polynomial of degree n ≥ 1. Let E be the splitting field
of f(x). Show that [E : F ] divides n!.

Solution. We use induction on n ≥ 1. If n = 1 then f(x) = a+ bx for some a, b ∈ F and so E = F . Then
[E : F ] = 1 divides n! = 1! = 1.

Suppose now that the claim is true for any polynomial of degree strictly less than n and we show that
it holds for f(x) ∈ F [x] of degree n. We consider the cases where f(x) is reducible and f(x) is irreducible
separately.

Case f(x) is reducible. Then f(x) = g(x)h(x) for some g(x), h(x) ∈ F [x] with deg(g(x)) = l ≥ 1 and
deg(h(x)) = m ≥ 1. Then n = l+m and so l,m < n. Let K be the splitting field of g(x) over F . Then g(x)
factors as a product of linear factors in K[x] and

K = F ({r ∈ K | g(r) = 0}).

Moreover, we have that [E : K] divides l! by induction hypothesis. Notice that h(x) ∈ K[x]. Let L be the
splitting field of h(x) over K. Then h(x) factors as a product of linear factors in L[x] and

L = K({s ∈ L | h(s) = 0}).

Again by induction hypothesis we have that [L : K] divides m!. Now notice that f(x) factors as a product
of linear factors in L[x] (since g(x) and h(x) do so) and that

L = K({s ∈ L | h(s) = 0}) = F ({s, r ∈ L | h(s) = 0, g(r) = 0}) = F ({t ∈ L | f(t) = 0}).

Hence L is the splitting field of f(x) over F and so L ∼= E. Then

[E : F ] = [L : F ] = [L : K][K : F ]
∣∣ m!l! = m!(n−m)!.

But m!(n−m)! divides n! since
(
n
m

)
= n!

m!(n−m)! is an integer. Hence [E : F ] divides n! as required.

Case f(x) is irreducible. Let α ∈ E be a root of f(x). Then [F (α) : F ] = deg(f(x)) = n. Moreover, in
F (α) we have f(x) = (x − α)g(x) where deg(g(x)) = n − 1. Let L be the splitting field of g(x) over F (α).
Then g(x) factors as a product of linear factors in L[x] and

L = F (α)({r ∈ L | g(r) = 0}).

Moreover we have that [L : F (α)] divides (n − 1)! by induction hypothesis. Notice that f(x) factors as a
product of linear factors in L[x] (since g(x) does so) and that

L = F (α)({r ∈ L | g(r) = 0}) = F ({r ∈ L | g(r) = 0} ∪ {α}) = F ({r ∈ L | f(r) = 0}),

since α ∈ L. Hence L is the splitting field of f(x) over K(α) and so L ∼= E. Then

[E : F ] = [L : F ] = [L : F (α)][F (α) : F ] = [L : F (α)] · n.

Since [L : F (α)] divides (n− 1)!, we conclude that [E : F ] divides n! as required.

Problem 10. Let f(x) ∈ Q[x] be an irreducible polynomial of degree 3. Let E be the splitting field of f(x).
What are the possible values of [E : Q]? Provide an explicit example for each such possible value.

Solution. From Problem 9 we know that [E : Q] divides 3! = 6. Hence [E : Q] ∈ {1, 2, 3, 6}.
Case [E : Q] = 1. In this case f(x) = x− 1 is an example, since the splitting field of f(x) is E = Q.
Case [E : Q] = 2. We claim that this is impossible. Indeed, assume to a contradiction that [E : Q] = 2.

The there exists α ∈ E\Q which is a root of f(x). Since f(x) is irreducible, we have [Q(α) : Q] = deg(f(x)) =
3. But then Q ⊆ Q(α) ⊆ E gives

2 = [E : Q] = [E : Q(α)][Q(α) : Q] = [E : Q(α)] deg(f(x)) = [E : Q(α)] · 3 ≥ 3,

which is a contradiction.
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Case [E : Q] = 3. Our aim is to find a Galois field extension Q ⊆ L with [L : Q] = 6 and a normal
subgroup H of G := Gal(L/Q) such that H has order 2. Then by FTGT(2) we obtain H = Gal(L/LH), by
FTGT(3) we obtain [L : LH ] = |H| = 2, by FTGT(5) we obtain that Q ⊆ LH is normal and by FTGT(6)

we obtain [LH : Q] = Gal(L/Q)
Gal(L/LH) = [L:Q]

[L:LH ] =
6
2 = 3. Moreover, in this case there exist no intermediate fields

strictly between Q and LH . Indeed, if Q ⊆ F ⊆ LH , then

3 = [E : Q] = [E : LH ][LH : Q]

implies that either [E : LH ] = 1 or [LH : Q] = 1 and so either LH = E or LH = Q. By Theorem 11.4 we
conclude in this case that LH = Q(α) for some α ∈ E. In particular, since [E : Q] < ∞, we have that α
is algebraic over Q and hence the minimum polynomial pα(x) ∈ Q[x] exists. Now let g ∈ Gal(LH/Q) have
order three. Then g : Q(α) → Q(α) is an isomorphism with g(α) ̸= α. Then

0 = g(pα(α)) = pα(g(α))

implies that g(α) ̸= α is also a root of pα(x) and similarly g2(α) is also a root of pα(x). We conclude that
in this case Q(α) is the splitting field of pα(x). Now we proceed with finding a concrete example. Recall by

Example 12.13(1) that if ζ = e
2πi
7 , then Q(ζ) is the splitting field of Φ7(x) = 1+ x+ x2 + x3 + x4 + x5 + x6.

Moreover, in this case, the Galois group G = Gal(Q(ζ) : Q) is isomorphic to Z∗
7 and so [Q(ζ) : Q] = 6. More

precisely, we have that G = {σ1, σ2, σ3, σ4, σ5, σ6} where σi(ζ) = ζi. In particular, we have

σ2
6(ζ) = σ(ζ6) = ζ36 = ζ,

and so H = {σ1, σ6} is a subgroup of G of order 2 (notice that σ1 = idQ(ζ). Let us compute the fixed field
Q(ζ)H . A Q-basis of L is given by {1, ζ, ζ2, ζ3, ζ4, ζ5}. If q = a + bζ + cζ2 + dζ3 + eζ4 + fζ5 ∈ Q(ζ), then
σ6(q) = q if and only if

a+ bζ6 + cζ5 + dζ4 + eζ3 + fζ2 = a+ bζ + cζ2 + dζ3 + eζ4 + fζ5,

which, using ζ6 = −1− ζ − ζ2 − ζ3 − ζ4 − ζ5 (which holds since ζ is a root of Φ7(x)), becomes equivalent to

(a− b)− bζ + (f − b)ζ2 + (e− b)ζ3 + (d− b)ζ4 + (c− b)ζ5 = a+ bζ + cζ2 + dζ3 + eζ4 + fζ5.

By equating the coefficients of the same elements (which we can do since {1, ζ, ζ2, ζ3, ζ4, ζ5} is a linearly
independent set), we obtain a linear system of equations with unknowns a, b, c, d, e, f . Solving this system
we obtain b = 0, c = f and d = e. Hence

q = a+ cζ2 + dζ3 + dζ4 + cζ5 = a+ c(ζ2 + ζ5) + d(ζ3 + ζ4).

Hence
Q(ζ)H = {a+ c(ζ2 + ζ5) + d(ζ3 + ζ4) | a, c, d ∈ Q} = Q(ζ2 + ζ5, ζ3 + ζ4).

As claimed in the general case, we have [Q(ζ)H ,Q] = 3 since [Q(ζ) : Q(ζ)H ] = |H| = 2 by FTGT(3) and
[Q(ζ) : Q] = 6 by construction. We claim that Q(ζ2 + ζ5, ζ3 + ζ4) = Q(ζ2 + ζ5). Indeed, since there exist no
intermediate fields between Q and Q(ζ2 + ζ5, ζ3 + ζ4), it is enough to show that ζ2 + ζ5 is not in Q. To this
end we compute the minimal polynomial of ζ2 + ζ5 over Q. Notice that since [Q(ζ2 + ζ5, ζ3 + ζ4) : Q] = 3,
the minimal polynomial has degree at most 3. We set α = ζ2 + ζ5 and we compute

α2 = 2 + ζ3 + ζ4,

and α3 = ζ + 3α+ ζ6. Now we investigate if there exist k, l,m ∈ Q such that

α3 + kα2 + lα+m = 0.

Replacing α3 and α2 and replacing ζ6 = −1− ζ − ζ2 − ζ3 − ζ4 − ζ5, the above equation becomes

(m+ 2k − 1) + (2 + l)ζ2 + (k − 1)ζ3 + (k − 1)ζ4 + (2 + l)ζ5 = 0.
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Again equating the coefficients gives k = 1, l = −2 and m = −1. Hence ζ is a root of f(x) = x3+x2−2x−1 ∈
Q[x]. Notice that this polynomial has no roots in Z (since the only possible integer roots are divisors of the
constant term 1, and neither 1 nor −1 is a root) and so it has no roots in Q by Theorem 3.7. Hence α ̸∈ Q
and so Q(ζ)H = Q(α). Moreover, since f(x) is of degree 3, it follows that it is irreducible over Q. Now
notice that if K = Gal(Q(ζ)H/Q), then by FTGT(6) we have

K = Gal(Q(ζ)H/Q) ∼= Gal(Q(ζ) : Q)/Gal(Q(ζ) : Q(ζ)H) = G/H

has order 3. Given an element of g ∈ K of order 3, g(α) and g(α2) are both roots of f(x) different than
α and inside Q(α). Hence Q(α) is a splitting field of f(x) = x3 + x2 − 2x − 1 and [Q(α) : Q] = 3, as
required. (For an explicit g ∈ K we may pick σ3, so that σ3(ζ

2 + ζ5) = ζ + ζ6, σ3(ζ + ζ6) = ζ3 + ζ4 and
σ3(ζ

3 + ζ4) = ζ2 + ζ5, showing that the roots of f(x) are ζ2 + ζ5, ζ + ζ6 and ζ3 + ζ4.
Case [E : Q] = 6. For an example of this case let f(x) = x3 − 2. Then if E is the splitting field of f(x),

we have [E : Q] = 6 as we computed in Example 7.5(1).
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