Galois theory - Problem Set 2

To be solved on Friday 10.02

Problem 1. (Exercise 15.3 .2 in the book.) Prove that $\sqrt{2}$ and $\sqrt{3}$ are algebraic over \mathbb{Q}. Find the degree of
(a) $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q}.
(b) $\mathbb{Q}(\sqrt{3})$ over \mathbb{Q}.
(c) $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over \mathbb{Q}.
(d) $\mathbb{Q}(\sqrt{2}+\sqrt{3})$ over \mathbb{Q}.

Solution. Since $\sqrt{2}$ is a root of $f(x)=x^{2}-2 \in \mathbb{Q}[x]$ and $\sqrt{3}$ is a root of $g(x)=x^{2}-3 \in \mathbb{Q}[x]$, we have that $\sqrt{2}$ and $\sqrt{3}$ are algebraic over \mathbb{Q}. Moreover, both of these polynomials are have no root in \mathbb{Q} and so they are irreducible by Lemma 3.4(e). Hence by Theorem 4.6 we have

$$
[\mathbb{Q}(\sqrt{2}: \mathbb{Q}]=\operatorname{deg}(f)=2 \text { and }[\mathbb{Q}(\sqrt{3}: \mathbb{Q}]=\operatorname{deg}(g)=2 .
$$

This solves (a) and (b). For $[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}]$, notice that we have by Example 5.5 that

$$
[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}]=[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=2 \cdot 2=4
$$

Finally

$$
\mathbb{Q}(\sqrt{2}+\sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})
$$

since $\sqrt{2}+\sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$. On the other hand, we have

$$
(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})=4-3=1
$$

and so $\sqrt{2}-\sqrt{3}=(\sqrt{2}+\sqrt{3})^{-1} \in \mathbb{Q}(\sqrt{2}+\sqrt{3})$. Then

$$
\sqrt{2}=\frac{1}{2}(\underbrace{\sqrt{2}+\sqrt{3}}_{\in \mathbb{Q}(\sqrt{2}+\sqrt{3})}+\underbrace{\sqrt{2}-\sqrt{3}}_{\in \mathbb{Q}(\sqrt{2}+\sqrt{3})})
$$

and hence $\sqrt{2} \in \mathbb{Q}(\sqrt{2}+\sqrt{3})$. Then

$$
\sqrt{3}=\underbrace{\sqrt{2}+\sqrt{3}}_{\in \mathbb{Q}(\sqrt{2}+\sqrt{3})}-\underbrace{\sqrt{2}}_{\in \mathbb{Q}(\sqrt{2}+\sqrt{3})}
$$

and so $\sqrt{3} \in \mathbb{Q}(\sqrt{2}+\sqrt{3})$ as well. Thus $\mathbb{Q}(\sqrt{2}, \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}+\sqrt{3})$ and we conclude that $\mathbb{Q}(\sqrt{2}, \sqrt{3})=$ $\mathbb{Q}(\sqrt{2}+\sqrt{3})$ and so

$$
[\mathbb{Q}(\sqrt{2}+\sqrt{3}): \mathbb{Q}]=[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}]=4
$$

Problem 2. (Exercise 15.3 .4 in the book) Find a suitable number α such that
(a) $\mathbb{Q}(\sqrt{2}, \sqrt{5})=\mathbb{Q}(\alpha)$.
(b) $\mathbb{Q}(\sqrt{3}, i)=\mathbb{Q}(\alpha)$.

Solution. We first the more general claim if $a, b \in \mathbb{C}$ satisfy $a^{2}-b^{2} \in \mathbb{Q}$, then $\mathbb{Q}(\sqrt{a}, \sqrt{b})=\mathbb{Q}(\sqrt{a}+\sqrt{b})$. Since $\sqrt{a}+\sqrt{b} \in \mathbb{Q}(\sqrt{a}, \sqrt{b})$, we have that $\mathbb{Q}(\sqrt{a}+\sqrt{b}) \subseteq \mathbb{Q}(\sqrt{a}, \sqrt{b})$. For the other direction we have

$$
(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})=a^{2}-b^{2} \in \mathbb{Q}(\alpha)
$$

and so

$$
(\sqrt{a}-\sqrt{b})=\frac{a^{2}-b^{2}}{\sqrt{a}-\sqrt{b}} \in \mathbb{Q}(\sqrt{a}+\sqrt{b})
$$

Then

$$
\sqrt{a}=\frac{1}{2}(\underbrace{\sqrt{a}+\sqrt{b}}_{\in \mathbb{Q}(\sqrt{a}+\sqrt{b})}+\underbrace{\sqrt{a}-\sqrt{b}}_{\in \mathbb{Q}(\sqrt{a}+\sqrt{b})})
$$

and hence $\sqrt{a} \in \mathbb{Q}(\sqrt{a}+\sqrt{b})$. Then

$$
\sqrt{b}=\underbrace{\sqrt{a}+\sqrt{b}}_{\in \mathbb{Q}(\sqrt{a}+\sqrt{b})}-\underbrace{\sqrt{a}}_{\in \mathbb{Q}(\sqrt{a}+\sqrt{b})}
$$

and so $\sqrt{b} \in \mathbb{Q}(\sqrt{a}+\sqrt{b})$ as well. Since $\sqrt{a}, \sqrt{b} \in \mathbb{Q}(\sqrt{a}+\sqrt{b})$, we have that $\mathbb{Q}(\sqrt{a}, \sqrt{b}) \subseteq \mathbb{Q}(\sqrt{a}+\sqrt{b})$, which shows the claim.
(a) In this exercise we have $a=2$ and $b=5$ and $2^{2}-5^{2}=-21 \in \mathbb{Q}$. Hence by our general statement above we can pick $\alpha=\sqrt{2}+\sqrt{5}$.
(b) In this exercise we have $a=3$ and $b=i=\sqrt{-1}$ and $3^{2}-\sqrt{-1}^{2}=10 \in \mathbb{Q}$. Hence by our general statement above we can pick $\alpha=\sqrt{3}+i$.

Problem 3. (Exam June 2014, Problem 1.)
(a) Write down the irreducible polynomials over \mathbb{Z}_{2} of degrees two and three, respectively.
(b) How many irreducible polynomials of degree four are there over \mathbb{Z}_{2} ?

Solution.

(a) Let $f(x)=a+b x+c x^{2}+d x^{3} \in \mathbb{Z}_{2}[x]$ be irreducible and of degree 2 or 3 . Equivalently, by Lemma 3.4(c), we have that f has no roots if \mathbb{Z}_{2}. Since $f(x) \in \mathbb{Z}_{2}[x]$, we have that $a, b, c, d \in\{0,1\}$. If $a=0$, then $f(0)=0$ and so we have $a=1$. If an odd number of b, c and d are equal to 1 , then $f(1)=0$. Hence we have that an even number of b, c and d are equal to 1 . Since $f(x)$ has degree at least 2 , at least one of c and d is equal to 1 . Since at least one of c and d is equal to 1 and since an even number of b, c and d is equal to 1 , we conclude that two of b, c and d must be equal to 1 . Hence the irreducible polynomials of degree 2 or 3 in $\mathbb{Z}_{2}[x]$ are

$$
1+x+x^{2}, 1+x+x^{3}, 1+x^{2}+x^{3}
$$

(b) Now let $f(x)=a+b x+c x^{2}+d x^{3}+x^{4} \in \mathbb{Z}_{2}[x]$ be irreducible. By Lemma 3.4(b), this implies that f has no roots if \mathbb{Z}_{2}. Since $f(x) \in \mathbb{Z}_{2}[x]$, we have that $a, b, c, d \in\{0,1\}$. If $a=0$, then $f(0)=0$ and so we have $a=1$. Moreover, if an even number of b, c and d are equal to 1 , then $f(1)=0$. Hence either one of b, c and d is equal to 1 , or all three of them are equal to 1 . We conclude that

$$
f(x) \in\left\{1+x+x^{4}, 1+x^{2}+x^{4}, 1+x^{3}+x^{4}, 1+x+x^{2}+x^{3}+x^{4}\right\}=: \mathcal{P}
$$

and it remains to check which of these four polynomials in \mathcal{P} are irreducible. Hence we want to check which of these four polynomials in \mathcal{P} can be written as a product $g(x) h(x)$ with $\operatorname{deg}(g) \geq 1$ and $\operatorname{deg}(h) \geq 1$. The polynomials of degree 1 in $\mathbb{Z}_{2}[x]$ are x and $1+x$ and both have a root in \mathbb{Z}_{2}. Hence $g(x)$ and $h(x)$ cannot be of degree 1 since none of the polynomials in \mathcal{P} have roots in \mathbb{Z}_{2}. Therefore $\operatorname{deg}(g) \geq 2$ and $\operatorname{deg}(h) \geq 2$. Since polynomials in \mathcal{P} have degree 4 , we conclude that
$\operatorname{deg}(g)=\operatorname{deg}(h)=2$. By part (a) we know that the only polynomial of degree 2 with no roots in \mathbb{Z}_{2} is $1+x+x^{2}$. Hence $g(x)=h(x)=1+x+x^{2}$ which gives

$$
\left(1+x+x^{2}\right)\left(1+x+x^{2}\right)=1+x+x^{2}+x+x^{2}+x^{3}+x^{2}+x^{3}+x^{4}=1+x^{2}+x^{4} \in \mathcal{P}
$$

We conclude that the rest of the polynomials in \mathcal{P} are irreducible, and so the irreducible polynomials of degree four in \mathbb{Z}_{2} are

$$
1+x+x^{4}, 1+x^{3}+x^{4}, 1+x+x^{2}+x^{3}+x^{4}
$$

Problem 4. (Exam June 2014, Problem 3.) Let $f(x) \in F[x]$ be a nonzero polynomial over the field F with various properties as described below. Let $\alpha \in \bar{F}$, where \bar{F} denotes the algebraic closure of F.
(a) Let $f(\alpha)=0$. Assume that whenever $g(\alpha)=0$ for some nonzero $g(x) \in F[x]$, then $\operatorname{deg}(f) \leq \operatorname{deg}(g)$. Show that $f(x)$ is irreducible over F.
(b) Show the converse of (a), that is: Assume $f(x)$ is irreducible over F and $f(\alpha)=0$. Let $g(\alpha)=0$ for some nonzero $g(x) \in F[x]$. Show that $\operatorname{deg}(f) \leq \operatorname{deg}(g)$.

Solution.

(a) Assume to a contradiction that $f(x)$ is reducible over F. Then $f(x)=g(x) h(x)$ with $\operatorname{deg}(g) \geq 1$ and $\operatorname{deg}(h) \geq 1$. Since $f(\alpha)=0$, we have that $g(\alpha)=0$ or $h(\alpha)=0$. Without loss of generality assume that $g(\alpha)=0$. Then by assumption we have $\operatorname{deg}(f) \leq \operatorname{deg}(g)$. But

$$
\operatorname{deg}(g)=\operatorname{deg}(f)-\operatorname{deg}(h) \leq \operatorname{deg}(f)-1,
$$

gives a contradiction. Hence $f(x)$ is irreducible over F.
(b) Let $p(x)$ be the minimal polynomial of α over F. Then $\operatorname{deg}(p) \leq \operatorname{deg}(f)$ and so by division algorithm there exist polynomials $q(x), r(x) \in F[x]$ with $f(x)=q(x) p(x)+r(x)$ and $\operatorname{deg}(r)<\operatorname{deg}(p)$. Since

$$
0=f(\alpha)=q(\alpha) p(\alpha)+r(\alpha)=q(\alpha) \cdot 0+r(\alpha)=r(\alpha)
$$

we conclude that α is a root of $r(x)$. Since $\operatorname{deg}(r)<\operatorname{deg}(p)$ and $p(x)$ is the minimal polynomial of α over F, we conclude that $r(x)=0$. Then $f(x)=q(x) p(x)$ and f irreducible implies that $q(x) \in F$ or $p(x) \in F$. Since $p(x)$ is irreducible, we conclude that $p(x) \in F$. Hence $\operatorname{deg}(f)=\operatorname{deg}(p)$. Now let $g(\alpha)=0$ for some nonzero $g(x) \in F[x]$. Then $\operatorname{deg}(p) \leq \operatorname{deg}(g)$ since $p(x)$ is the minimal polynomial of α over F. Since $\operatorname{deg}(f)=\operatorname{deg}(p)$, the claim follows.

Problem 5. (Exam May 2013, Problem 3.)
(a) Let α be an algebraic number over the field F such that $[F(\alpha): F]$ is an odd number. Show that this implies that $F\left(\alpha^{2}\right)=F(\alpha)$.
(b) Give an example to show that the converse implication is not true (Hint: Cyclotomic extensions.)

Solution.

(a) Notice that $F\left(\alpha^{2}\right) \subseteq F(\alpha)$. Consider the polynomial $f(x)=x^{2}-\alpha^{2} \in F\left(\alpha^{2}\right)[x]$. Then α is a root of $f(x)$ and so $\left[F(\alpha): F\left(\alpha^{2}\right)\right] \leq 2$. Assume to a contradiction that $\left[F(\alpha): F\left(\alpha^{2}\right)\right]=2$. Then the field extensions $F \subseteq F\left(\alpha^{2}\right) \subseteq F(\alpha)$ give

$$
[F(\alpha): F]=\left[F(\alpha): F\left(\alpha^{2}\right)\right]\left[F\left(\alpha^{2}\right): F\right]=2\left[F\left(\alpha^{2}\right): F\right],
$$

contradicting $[F(\alpha): F]$ being odd. Hence $\left[F(\alpha): F\left(\alpha^{2}\right)\right]<2$ from which it follows that $[F(\alpha)$: $\left.F\left(\alpha^{2}\right)\right]=1$ or $F(\alpha)=F\left(\alpha^{2}\right)$.
(b) The roots of $x^{3}-1=(x-1)\left(x^{2}+x+1\right) \in \mathbb{R}[x]$ are $1, \omega$ and ω^{2}, where $\omega=e^{\frac{2 \pi i}{3}}$. Since $\left(\omega^{2}\right)^{2}=\omega^{4}=\omega$, we have that $\mathbb{R}(\omega)=\mathbb{R}\left(\omega^{2}\right)$. But the polynomial $x^{2}+x+1$ is irreducible over \mathbb{R} since its roots ω and ω^{2} are not real. Hence

$$
[\mathbb{R}(\omega): \mathbb{R}]=\operatorname{deg}\left(x^{2}+x+1\right)=2
$$

which is not odd.

Problem 6. (Exam June 2015, Problem 3.) Let $F \subseteq E$ be a field extension of degree $[E: F]=n$.
(a) Show that if n is a prime number, then there is no proper intermediate field between E and F (that is, no field K with $F \subseteq K \subseteq E$ and $E \neq K \neq F$). Deduce that if $\alpha \in E \backslash F$, then the minimal polynomial of α in $F[x]$ has degree n.
(b) Let $E=F(\alpha, \beta)$, where α has minimal polynomial in $F[x]$ of degree d_{1}, and β has minimal polynomial in $F[x]$ of degree d_{2}. Show that if d_{1} and d_{2} are coprime (i.e. $\operatorname{gcd}\left(d_{1}, d_{2}\right)=1$), then $[E: F]=d_{1} d_{2}$.
(c) Give an example where α and β are as in (b), and such that $\alpha \beta$ has minimal polynomial in $F[x]$ of degree d_{1} or d_{2}. (Hint: consider $F=\mathbb{Q}$ with $\alpha=\sqrt[3]{2}$ and β a suitable root of unity.)

Solution.

(a) Let K be a field with $F \subseteq K \subseteq E$. Then

$$
n=[E: F]=[E: K][K: F] .
$$

If n is a prime number, then either $[E: K]=1$ and so $K=E$ or $[K: F]=1$ and so $K=F$. Now let $\alpha \in E \backslash F$. Since $F \subseteq E$ is a finite extension, it is also algebraic and so α is algebraic over F. Hence the minimal polynomial $p(x)$ of α over F exists. Then $F \subseteq F(\alpha) \subseteq E$ implies that $F(\alpha)=F$ or $F(\alpha)=E$. Since $\alpha \notin F$, we have $F(\alpha)=E$. Then

$$
\operatorname{deg}(p)=[F(\alpha): F]=[E: F]=n,
$$

as claimed.
(b) Let $f_{\alpha}(x), f_{\beta}(x) \in F[x]$ be the minimal polynomials of α and β over F. Then $\operatorname{deg}\left(f_{\alpha}\right)=d_{1}$ and $\operatorname{deg}\left(f_{\beta}\right)=d_{2}$. Moreover, we have

$$
[F(\alpha): F]=\operatorname{deg}\left(f_{\alpha}\right)=d_{1} \text { and }[F(\beta): F]=\operatorname{deg}\left(f_{\beta}\right)=d_{2} .
$$

Notice that $f_{\alpha}(x) \in F(\beta)[x]$ and f_{α} has α as a root. Let $m:=[F(\alpha, \beta): F(\beta)]$. Then

$$
m=[F(\alpha, \beta): F(\beta)] \leq \operatorname{deg}\left(f_{\alpha}\right)=d_{1},
$$

and similarly we obtain $k:=[F(\alpha, \beta): F(\alpha)] \leq d_{2}$. Then we have

$$
n=[E: F]=[F(\alpha, \beta): F]=[F(\alpha, \beta): F(\beta)][F(\beta): F]=m d_{2} .
$$

Similarly, we obtain $n=k d_{1}$. Hence $m d_{2}=k d_{1}$. Since $d_{2} \mid k d_{1}$ and $\operatorname{gcd}\left(d_{1}, d_{2}\right)=1$, we obtain $d_{2} \mid k$. Since $k \leq d_{2}$, we obtain $k=d_{2}$ and so $[E: F]=n=d_{1} d_{2}$ as required.
(c) Let $\alpha=\sqrt[3]{2}$ and let $\beta=e^{\frac{2 \pi i}{3}}$. Then the minimal polynomial of α over \mathbb{Q} is $x^{3}-2$ (is irreducible by Eisenstein criterion for $p=2$, is monic, and has $\sqrt[3]{2}$ as a root), and the minimal polynomial of β over \mathbb{Q} is $x^{2}+x+1$ (is irreducible since its roots $\beta, \beta^{2} \notin \mathbb{Q}$ and has degree 2 , is monic, and has β as a root). Then the degree of $x^{3}-2$ is 3 and the degree of $x^{2}+x+1$ is 2 and $\operatorname{gcd}(2,3)=1$. On the other hand the minimal polynomial of $\alpha \beta=e^{\frac{2 \pi i}{3}} \sqrt[3]{2}$ over \mathbb{Q} is again $x^{3}-2$ (is irreducible and monic and has $e^{\frac{2 \pi i}{3}} \sqrt[3]{2}$ as a root).

Problem 7. (Exercise 15.4 .8 in the book.) Let F be a field and let $n \geq 1$. Let $f(x)=x^{n}-\alpha \in F[x]$ be an irreducible polynomial over F and let $b \in K$ be a root of f, where $F \subseteq K$ is a field extension. If m is a positive integer such that $m \mid n$, find the degree of the minimal polynomial of b^{m} over F.

Solution. Since f is irreducible and monic, f is the minimal polynomial of b over F. It follows that

$$
[F(b): F]=\operatorname{deg}(f)=n
$$

Consider the sequence of field extensions

$$
F \subseteq F\left(b^{m}\right) \subseteq F(b)
$$

Let $n=m k$. Let $g(x)=x^{k}-a \in F[x]$ and $h(x)=x^{m}-b^{m} \in F\left(b^{m}\right)[x]$. Then b^{m} is a root of $g(x)$ and b is a root of $h(x)$. Hence

$$
\left[F\left(b^{m}\right): F\right] \leq \operatorname{deg}(g)=k \text { and }\left[F(b): F\left(b^{m}\right)\right] \leq \operatorname{deg}(h)=m
$$

Using Theorem 4.3 we obtain

$$
m k=n=[F(b): F]=\left[F(b): F\left(b^{m}\right)\right]\left[F\left(b^{m}\right): F\right] \leq m k
$$

which implies that $\left[F\left(b^{m}\right): F\right]=k$. Hence the degree of the minimal polynomial of b^{m} over F is $\frac{n}{m}$.
Problem 8. (Exam August 2013, Problem 4.) Let $f(x) \in F[x]$ be an irreducible polynomial of prime degree p over the field F, with $\operatorname{char}(F)=0$ (Warning: I don't think the characteristic of F plays a role.). Let $K=F(\alpha)$, where α is a root of an irreducible polynomial $g(x) \in F[x]$ of prime degree q over the field F. Assume $f(x)$ is reducible in $K[x]$. Show that $p=q$.

Solution. Let β be a root of f in the algebraic closure \bar{F} of F. Consider the field extension $F \subseteq F(\alpha, \beta)$. Using

$$
F \subseteq F(\alpha) \subseteq F(\alpha, \beta)
$$

we first have that $[F(\alpha): F]=\operatorname{deg}(g)=q$ since $g(x)$ is irreducible over F and has α as a root, and we also have that $[F(\alpha, \beta): F(\alpha)]=d<p$ since $f(x)$ is reducible in $F(\alpha)[x]=K[x]$, and so the minimal polynomial of β over $F(\alpha)$ has degree strictly less than $\operatorname{deg}(f)=p$. Hence

$$
[F(\alpha, \beta): F]=[F(\alpha, \beta): F(\alpha)][F(\alpha): F]=d q
$$

Using

$$
F \subseteq F(\beta) \subseteq F(\alpha, \beta)
$$

we first have that $[F(\beta): F]=\operatorname{deg}(f)=p$, since $f(x)$ is irreducible over F and has β as a root, and we also have that $[F(\alpha, \beta): F(\beta)]=d^{\prime} \leq q$ since $g(x) \in F(\beta)[x]$ has α as a root and $\operatorname{deg}(g)=q$. Hence

$$
[F(\alpha, \beta): F]=[F(\alpha, \beta): F(\beta)][F(\beta): F]=d^{\prime} p
$$

We conclude that $d q=d^{\prime} p$. Then $p \mid(d q)$ and so $p \mid d$ or $p \mid q$ since p is prime. But $d<p$ and so we have that $p \mid q$. Since p and q are both prime numbers, we conclude that $p=q$.

Problem 9. (Warning: Needs field of fractions.) (Exercise 15.4.10 in the book.) Give an example of a field E containing a proper subfield K such that E is embeddable in K and $[E: K]$ is finite.

Solution. Consider the field

$$
E:=\mathbb{Q}(x)=\left\{\left.\frac{p(x)}{q(x)} \right\rvert\, p(x), q(x) \in \mathbb{Q}[x], q(x) \neq 0\right\}
$$

with standard addition and multiplication. Similarly, define

$$
K:=\mathbb{Q}\left(x^{2}\right)=\left\{\left.\frac{p\left(x^{2}\right)}{q\left(x^{2}\right)} \right\rvert\, p(x), q(x) \in \mathbb{Q}[x], q(x) \neq 0\right\} .
$$

We claim that $K \subseteq E$. In particular, it is enough to show that $x \notin K$. Indeed, assume to a contradiction that $x \in \mathbb{Q}\left(x^{2}\right)$. Then there exist polynomials $p(x), q(x) \in \mathbb{Q}[x]$ such that

$$
x=\frac{p\left(x^{2}\right)}{q\left(x^{2}\right)}
$$

or that $x q\left(x^{2}\right)=p\left(x^{2}\right)$. But the right hand side is a polynomial of even degree, while the left hand side is a polynomial of odd degree and so we reach a contradiction. On the other hand, we have the field embedding

$$
\phi: \mathbb{Q}(x) \rightarrow \mathbb{Q}\left(x^{2}\right), \quad \phi\left(\frac{p(x)}{q(x)}\right)=\frac{p\left(x^{2}\right)}{q\left(x^{2}\right)}
$$

Now notice that $\mathbb{Q} \subseteq \mathbb{Q}\left(x^{2}\right) \subseteq \mathbb{Q}(x)$ gives

$$
E=\mathbb{Q}(x) \subseteq \mathbb{Q}\left(x^{2}\right)(x) \subseteq \mathbb{Q}(x)(x)=E
$$

and so $E=\mathbb{Q}\left(x^{2}\right)(x)=K(x)$. Hence

$$
[E: K]=[K(x): K] \geq 2
$$

where the last inequality follows since $x \notin K$. Since $f(y)=y^{2}-x^{2} \in K[y]\left(=\mathbb{Q}\left(x^{2}\right)[y]\right)$ and since x is a root of $f(y)$, we have that the $[K(x): K] \leq 2$. We conclude that $[E: K]=2$ is finite.

Problem 10. (Exercise 16.1.1 in the book.) Construct splitting fields K over \mathbb{Q} for the polynomial $f(x)$ and find the degree $[K: \mathbb{Q}]$ where $f(x)$ is
(a) $x^{3}-1$.
(b) $x^{4}+1$.
(c) $x^{6}-1$.
(d) $\left(x^{2}-2\right)\left(x^{3}-3\right)$.

Solution.

(a) Let $\omega=e^{\frac{2 \pi i}{3}}$ be a primitive third root of unity. Then the roots of $x^{3}-1$ are ω, ω^{2} and ω^{3} and so $K=\mathbb{Q}(\omega)$. We have $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$, and $x^{2}+x+1$ is irreducible over \mathbb{Q} since its roots are $\omega, \omega^{2} \notin \mathbb{Q}$. Hence the splitting field of $x^{3}-1$ over \mathbb{Q} is $K=\mathbb{Q}(\omega)$. Since $x^{2}+x+1$ is irreducible and monic, it is the minimal polynomial of ω over \mathbb{Q} and so $[K: \mathbb{Q}]=\operatorname{deg}\left(x^{2}+x+1\right)=2$.
(b) To find the roots of $x^{4}+1$ in \mathbb{C} we may write

$$
x^{4}+1=x^{4}+2 x^{2}+1-2 x^{2}=\left(x^{2}+1\right)^{2}-(\sqrt{2} x)^{2}=\left(x^{2}+1+\sqrt{2} x\right)\left(x^{2}+1-\sqrt{2} x\right)
$$

and so finding the roots of each second degree polynomial we obtain the roots

$$
x_{1}=\frac{1+i}{\sqrt{2}}, \quad x_{2}=\frac{-1+i}{\sqrt{2}}, \quad x_{3}=\frac{-1-i}{\sqrt{2}}, \quad x_{4}=\frac{1-i}{\sqrt{2}} .
$$

We claim that $x^{4}+1$ is irreducible. Here are three ways to see this.
(i) Since all roots of $x^{4}+1$ are complex, there is only one possible factorization of $x^{4}+1$ into a product of polynomials, namely

$$
x^{4}+1=\left(a x^{2}+b x+c\right)\left(d x^{2}+e x+f\right)
$$

for some $a, b, c, d, e, f \in \mathbb{Q}$. By computing the right hand side and equating the same degree terms we obtain an impossible system of equations.
(ii) Since all roots of $x^{4}+1$ are complex, there is only one possible factorization of $x^{4}+1$ into a product of polynomials, namely

$$
x^{4}+1=\left(a x^{2}+b x+c\right)\left(d x^{2}+e x+f\right)
$$

for some $a, b, c, d, e, f \in \mathbb{Q}$. We have shown that

$$
x^{4}+1=\left(x^{2}+\sqrt{2} x+1\right)\left(x^{2}-\sqrt{2} x+1\right)
$$

over \mathbb{R}. Moreover, the polynomials $x^{2}+\sqrt{2} x+1$ and $x^{2}-\sqrt{2} x+1$ are irreducible over \mathbb{R} since they have no roots in \mathbb{R}. Therefore, any possible factorization of $x^{4}+1$ in $\mathbb{Q}[x]$ as a product of two irreducible polynomials of degree 2 would differ up to a unit at most from the factorization in \mathbb{R}. This is impossible since $\sqrt{2} \notin \mathbb{Q}$.
(iii) Let $p(x)=x^{4}+1$ and compute $p(x+1)=x^{4}+4 x^{3}+6 x^{2}+4 x+2$. This is irreducible by Eisenstein criterion for $p=2$ and so $p(x)$ is irreducible as well.
Therefore $x^{4}+1$ is irreducible over \mathbb{Q}. Moreover, notice that $x_{1}^{3}=x_{2}$, that $x_{1}^{5}=x_{3}$, and that $x_{1}^{7}=x_{5}$. Hence the splitting field of $x^{4}+1$ over \mathbb{Q} is $K=\mathbb{Q}\left(x_{1}\right)$. Since $x^{4}+1$ is irreducible and monic, it is the minimal polynomial of x_{1} over \mathbb{Q} and so $[K: \mathbb{Q}]=4$.
(c) We have $x^{6}-1=(x-1)\left(x^{5}+x^{4}+x^{3}+x^{2}+x+1\right)$ and -1 is a root of the second factor. So we factorize further to obtain $x^{6}-1=(x-1)(x+1)\left(x^{4}+x^{2}+1\right)$. We have

$$
x^{4}+x^{2}+1=x^{4}+2 x^{2}+1-x^{2}=\left(x^{2}+1\right)^{2}-x^{2}=\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)
$$

and so finding the roots of each second degree polynomial we obtain that the roots of $x^{6}-1$ are

$$
x_{1}=-1, \quad x_{2}=1, \quad x_{3}=\frac{1+i \sqrt{3}}{2}, \quad x_{4}=\frac{-1+i \sqrt{3}}{2}, \quad x_{5}=\frac{-1-i \sqrt{3}}{2}, \quad x_{6}=\frac{1-i \sqrt{3}}{2} .
$$

Hence the splitting field of $x^{6}-1$ over \mathbb{Q} is $K=\mathbb{Q}(i \sqrt{3})$. Since $x^{2}+3$ is irreducible, monic, and has $i \sqrt{3}$ as a root, it is the minimal polynomial of $i \sqrt{3}$ over \mathbb{Q} and so $[K: \mathbb{Q}]=2$.
(d) The roots of $\left(x^{2}-2\right)\left(x^{3}-3\right)$ are

$$
x_{1}=\sqrt{2}, x_{2}=-\sqrt{2}, x_{3}=\omega \sqrt[3]{3}, x_{4}=\omega^{2} \sqrt[3]{3}, x_{5}=\sqrt[3]{3}
$$

where ω is a primitive third root of unity. Hence the splitting field of $\left(x^{2}-2\right)\left(x^{3}-3\right)$ over \mathbb{Q} is $K=\mathbb{Q}(\sqrt{2}, \sqrt[3]{3}, \omega)$. Consider the field extensions

$$
\begin{equation*}
\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt[3]{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt[3]{3}, \omega)=K \tag{1}
\end{equation*}
$$

We have

$$
\begin{equation*}
[\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=\operatorname{deg}\left(x^{2}-2\right)=2 \tag{2}
\end{equation*}
$$

We claim that the polynomial $x^{3}-3 \in \mathbb{Q}(\sqrt{2})[x]$ is irreducible over $\mathbb{Q}(\sqrt{2})$. By Lemma $3.4(3)$ it is enough to show that $x^{3}-3$ has no roots in $\mathbb{Q}(\sqrt{2})$. The roots of $x^{3}-3$ are x_{3}, x_{4} and x_{5}. Since x_{3} and x_{4} are not real, it is enough to show that $x_{4}=\sqrt[3]{3} \notin \mathbb{Q}(\sqrt{2})$. Assume to a contradiction that $\sqrt[3]{3} \in \mathbb{Q}(\sqrt{2})$. Since $[\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=2$, there exist $a, b \in \mathbb{Q}$ such that

$$
\sqrt[3]{3}=a+b \sqrt{2}
$$

Raising both sides to the third power we obtain

$$
3=a^{3}+3 a^{2} b \sqrt{2}+6 a b^{2}+2 b^{3} \sqrt{2},
$$

which we can rearrange to

$$
\left(a^{3}+6 a b^{2}-3\right)+\left(3 a^{2} b+2 b^{3}\right) \sqrt{2}=0
$$

Since $1, \sqrt{2}$ is a \mathbb{Q}-basis of $\mathbb{Q}(\sqrt{2})$, we have that

$$
\begin{array}{r}
a^{3}+6 a b^{2}-3=0 \\
3 a^{2} b+2 b^{3}=0
\end{array}
$$

If $b=0$, the first equation gives $a^{3}-3=0$ which is impossible since $a \in \mathbb{Q}$. Hence $b \neq 0$ and the second equation gives $3 a^{2}+2 b^{2}=0$, which is impossible in $\mathbb{Q}($ since $b \neq 0)$. Hence we reach a contradiction. We conclude that $x^{3}-3 \in \mathbb{Q}(\sqrt{2})[x]$ is irreducible over $\mathbb{Q}(\sqrt{2})$ and so

$$
\begin{equation*}
[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}(\sqrt{2})]=\operatorname{deg}\left(x^{3}-3\right)=3 . \tag{3}
\end{equation*}
$$

Finally, recall from part (a) that the polynomial $x^{2}+x+1 \in \mathbb{Q}(\sqrt{2}, \sqrt{3})[x]$ has only the nonreal roots ω, ω^{2}, and so none of them is in $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Hence $x^{2}+x+1$ is irreducible over $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ and so

$$
\begin{equation*}
[\mathbb{Q}(\sqrt{2}, \sqrt{3}, \omega): \mathbb{Q}(\sqrt{2}, \sqrt{3})]=2 \tag{4}
\end{equation*}
$$

Using (1), (2), (3), (4) we conclude that $[K: \mathbb{Q}]=2 \cdot 3 \cdot 2=12$.

Problem 11. (Exam June 2014, Problem 7.) Show that $\sqrt{2}+\sqrt[3]{3} \notin \mathbb{Q}$. (Hint: Consider an appropriate field extension of \mathbb{Q}.)

Solution. Assume to a contradiction that $\sqrt{2}+\sqrt[3]{3} \in \mathbb{Q}$. Then $\sqrt{2}+\sqrt[3]{3} \in \mathbb{Q}(\sqrt{2})$. In particular, we have

$$
\sqrt[3]{3}=\underbrace{\sqrt{2}+\sqrt[3]{3}}_{\in \mathbb{Q}(\sqrt{2})}-\underbrace{\sqrt{2}}_{\in \mathbb{Q}(\sqrt{2})}
$$

and so $\sqrt[3]{3} \in \mathbb{Q}(\sqrt{2})$. But this is not true, see the solution of Problem $10(\mathrm{~d})$.
Problem 12. (Exercise 16.1.2 in the book.) Construct a splitting field for $x^{3}+x+1 \in \mathbb{Z}_{2}[x]$ and list all its elements.

Solution. By evaluating the polynomial $x^{3}+x+1$ at 0 and 1 , we see that it has no roots in \mathbb{Z}_{2} and hence it is irreducible (since its degree is 3). Let $\mathbb{Z}_{2}(\alpha)$ be a field extension of \mathbb{Z}_{2} where α is a root of $x^{3}+x+1$, that is $\alpha^{3}+\alpha+1=0$. Then $\left[\mathbb{Z}_{2}(\alpha): \mathbb{Z}_{2}\right]=\operatorname{deg}\left(x^{3}+x+1\right)=3$, and $\left\{1, \alpha, \alpha^{2}\right\}$ is a \mathbb{Z}_{2}-basis of $\mathbb{Z}_{2}(\alpha)$. By checking we see that α^{2} is also a root of $x^{3}+x+1$ since

$$
\left(\alpha^{2}\right)^{3}+\alpha^{2}+1=\alpha^{6}+\alpha^{2}+1=\left(1+\alpha^{2}\right)+\alpha^{2}+1=0
$$

where using $\alpha^{3}+\alpha+1=0$, we computed $\alpha^{3}=-1-\alpha=1+\alpha$ and so $\alpha^{6}=1+\alpha^{2}$. Therefore $x^{3}+x+1$ has two roots in $\mathbb{Z}_{2}(\alpha)$ and hence it has all its roots in $\mathbb{Z}_{2}(\alpha)$ since its degree is 3 . We conclude that $\mathbb{Z}_{2}(\alpha)=\left\{0,1, \alpha, 1+\alpha, \alpha^{2}, 1+\alpha^{2}, \alpha+\alpha^{2}, 1+\alpha+\alpha^{2}\right\}$ is the splitting field of $x^{3}+x+1$ over \mathbb{Z}_{2}.

Problem 13. (Exercise 16.1.5 in the book.) Let E be the spliting field of a polynomial of degree n over a field F. Show that $[E: F] \leq n!$.

Solution. We use induction on $n \geq 1$. For the base case $n=1$ we have that $E=F$ and so $[E: F]=1 \leq 1$!. Assume now that the claim is true for all polynomials of degree at most $n-1$ and we show that the claim holds for polynomials of degree n. Let $f(x) \in F[x]$ be a polynomial of degree n and E its splitting field. Let $\alpha_{1}, \ldots, \alpha_{n}$ be the roots of f in E (possibly with duplicates). Then $E=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Since $x-\alpha_{1} \in$ $F\left(\alpha_{1}\right)[x]$ divides $f(x)$, the polynomial $g(x)=\frac{f(x)}{x-\alpha_{1}}$ is a well-defined polynomial in $F\left(\alpha_{1}\right)[x]$. Moreover, its degree is $n-1$ and its roots are $\alpha_{2}, \ldots, \alpha_{n}$ and so its splitting field over $F\left(\alpha_{1}\right)$ is $F\left(\alpha_{1}\right)\left(\alpha_{2}, \ldots, \alpha_{n}\right)=E$. Hence by induction hypothesis we have $\left[E: F\left(\alpha_{1}\right)\right] \leq(n-1)$!. On the other hand, α_{1} is a root of $f(x) \in F[x]$ and so $\left[F\left(\alpha_{1}\right): F\right] \leq \operatorname{deg}(f)=n$. Then from the field extensions $F \subseteq F\left(\alpha_{1}\right) \subseteq E$ we obtain

$$
[E: F]=\left[E: F\left(\alpha_{1}\right)\right]\left[F\left(\alpha_{1}\right): F\right] \leq n(n-1)!=n!
$$

as required.
Problem 14. Let $f(x)=x^{3}+a x+b \in \mathbb{Q}[x]$. Let E be the splitting field of f. Let $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{C}$ be the roots of f (not necessarily distinct).
(a) Define $D=\left(\alpha_{2}-\alpha_{1}\right)^{2}\left(\alpha_{3}-\alpha_{1}\right)^{2}\left(\alpha_{3}-\alpha_{2}\right)^{2}$. Show that $D=-\left(4 a^{3}+27 b^{2}\right)$.
(b) Show that if $f(x)$ is reducible, then $[E: \mathbb{Q}]=1$ or $[E: \mathbb{Q}]=2$.
(c) (Exercise 16.1.3 in the book.) Show that if $f(x)$ is irreducible and $\sqrt{D} \in \mathbb{Q}$, then $[E: \mathbb{Q}]=3$.
(d) (Exercise 16.1.4 in the book.) Show that if $f(x)$ is irreducible and $\sqrt{D} \notin \mathbb{Q}$, then $[E: \mathbb{Q}]=6$.

Solution.

(a) We have $f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)$. Then

$$
\begin{aligned}
x^{3}+a x+b & =\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right) \\
& =x^{3}-\alpha_{3} x^{2}-\alpha_{2} x^{2}-\alpha_{1} x^{2}+\alpha_{1} \alpha_{2} x+\alpha_{1} \alpha_{3} x+\alpha_{2} \alpha_{3} x-\alpha_{1} \alpha_{2} \alpha_{3} \\
& =x^{3}-\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) x^{2}+\left(\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3}\right) x-\alpha_{1} \alpha_{2} \alpha_{3},
\end{aligned}
$$

from which we get

$$
\begin{align*}
\alpha_{1}+\alpha_{2}+\alpha_{3} & =0, \tag{5}\\
\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3} & =a, \tag{6}\\
-\alpha_{1} \alpha_{2} \alpha_{3} & =b . \tag{7}
\end{align*}
$$

Using (5) we may eliminate α_{3} from (6) and (7) to obtain

$$
\begin{align*}
-\left(\alpha_{1}^{2}+\alpha_{1} \alpha_{2}+\alpha_{2}^{2}\right) & =a \tag{8}\\
\alpha_{1} \alpha_{2}\left(\alpha_{1}+\alpha_{2}\right) & =b \tag{9}
\end{align*}
$$

Now we compute D :

$$
\begin{aligned}
\left(\alpha_{2}-\alpha_{1}\right)^{2}\left(\alpha_{3}-\alpha_{1}\right)^{2}\left(\alpha_{3}-\alpha_{2}\right)^{2} & \stackrel{(5)}{=}\left(\alpha_{2}-\alpha_{1}\right)^{2}\left(\alpha_{2}+2 \alpha_{1}\right)^{2}\left(\alpha_{1}+2 \alpha_{2}\right)^{2} \\
& =\left(\alpha_{1}^{2}-2 \alpha_{1} \alpha_{2}+\alpha_{2}^{2}\right)\left(4 \alpha_{1}^{2}+4 \alpha_{1} \alpha_{2}+\alpha_{2}^{2}\right)\left(\alpha_{1}^{2}+4 \alpha_{1} \alpha_{2}+4 \alpha_{2}^{2}\right) \\
& \stackrel{(8)}{=}\left(-3 \alpha_{1} \alpha_{2}-a\right)\left(3 \alpha_{1}^{2}+3 \alpha_{1} \alpha_{2}-a\right)\left(3 \alpha_{2}^{2}+3 \alpha_{1} \alpha_{2}-a\right) \\
& =\left(-9 \alpha_{1}^{3} \alpha_{2}-9 \alpha_{1}^{2} \alpha_{2}^{2}+3 a \alpha_{1} \alpha_{2}-3 a \alpha_{1}^{2}-3 a \alpha_{1} \alpha_{2}+a^{2}\right)\left(3 \alpha_{2}^{2}+3 \alpha_{1} \alpha_{2}-a\right) \\
& =\left(-9 \alpha_{1}^{2} \alpha_{2}\left(\alpha_{1}+\alpha_{2}\right)-3 a \alpha_{1}^{2}+a^{2}\right)\left(3 \alpha_{2}^{2}+3 \alpha_{1} \alpha_{2}-a\right) \\
& \stackrel{(9)}{=}\left(-9 b \alpha_{1}-3 a \alpha_{1}^{2}+a^{2}\right)\left(3 \alpha_{2}^{2}+3 \alpha_{1} \alpha_{2}-a\right) \\
& =-27 b \alpha_{1} \alpha_{2}^{2}-27 b \alpha_{1}^{2} \alpha_{2}+9 a b \alpha_{1}-9 a \alpha_{1}^{2} \alpha_{2}^{2}-9 a \alpha_{1}^{3} \alpha_{2}+3 a^{2} \alpha_{1}^{2}+3 a^{2} \alpha_{2}^{2}+3 a^{2} \alpha_{1} \alpha_{2}-a^{3} \\
& =-27 b \alpha_{1} \alpha_{2}\left(\alpha_{1}+\alpha_{2}\right)+9 a b \alpha_{1}-9 a \alpha_{1}^{2} \alpha_{2}\left(\alpha_{1}+\alpha_{2}\right)+3 a^{2}\left(\alpha_{1}^{2}+\alpha_{1} \alpha_{2}+\alpha_{2}^{2}\right)-a^{3} \\
& \stackrel{(9)}{=}-27 b^{2}+9 a b \alpha_{1}-9 a b \alpha_{1}+3 a^{2}\left(\alpha_{1}^{2}+\alpha_{1} \alpha_{2}+\alpha_{2}^{2}\right)-a^{3} \\
& \stackrel{(8)}{=}-27 b^{2}-3 a^{3}-a^{3} \\
& =-\left(4 a^{3}+27 b^{2}\right)
\end{aligned}
$$

as required.
(b) If $f(x)$ is reducible, then it has a root in \mathbb{Q}, say α_{1}. Then $f(x)=\left(x-\alpha_{1}\right) g(x)$ where $g(x)$ has degree 2 and has α_{2}, α_{3} as roots. We consider the cases $g(x)$ reducible and $g(x)$ irreducible separately.
If $g(x)$ is reducible, it has a root in \mathbb{Q}, say α_{2}. Then $g(x)=\left(x-\alpha_{2}\right) h(x)$ where $h(x)$ has degree 1 and has α_{3} as a root. It follows that $\alpha_{3} \in \mathbb{Q}$ and so in this case $E=\mathbb{Q}$ and $[E: \mathbb{Q}]=[\mathbb{Q}: \mathbb{Q}]=1$.
If $g(x)$ is irreducible, then α_{2} and α_{3} do not belong in \mathbb{Q}. Then $\alpha_{2} \in \mathbb{Q}\left(\alpha_{2}\right)$ and so $g(x)=(x-$ $\left.\alpha_{2}\right) h(x)$ in $\mathbb{Q}\left(\alpha_{2}\right)$ where $h(x)$ has degree 1 and has α_{3} as a root. It follows that $\alpha_{3} \in \mathbb{Q}\left(\alpha_{2}\right)$ and so $E=\mathbb{Q}\left(\alpha_{2}, \alpha_{3}\right)=\mathbb{Q}\left(\alpha_{2}\right)$. Since $g(x)$ is irreducible and $\alpha_{2} \notin \mathbb{Q}$ is a root of g, it follows that $[E: \mathbb{Q}]=\left[\mathbb{Q}\left(\alpha_{2}\right): \mathbb{Q}\right]=\operatorname{deg}(g)=2$.
(c) By part (a) we have that $\sqrt{D}=\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}-\alpha_{2}\right) \in \mathbb{Q}$. Now consider $\mathbb{Q}\left(\alpha_{1}\right)$. By (5) we have $\alpha_{2}+\alpha_{3}=-\alpha_{1} \in \mathbb{Q}\left(\alpha_{1}\right)$. By (7) we have $\alpha_{2} \alpha_{3}=-b \alpha_{1}^{-1} \in \mathbb{Q}\left(\alpha_{1}\right)$. Hence

$$
\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{3}-\alpha_{1}\right)=\underbrace{\alpha_{2} \alpha_{3}}_{\in \mathbb{Q}\left(\alpha_{1}\right)}-\alpha_{1} \underbrace{\left(\alpha_{2}+\alpha_{3}\right)}_{\in \mathbb{Q}\left(\alpha_{1}\right)}+\alpha_{1}^{2} \in \mathbb{Q}\left(\alpha_{1}\right) .
$$

Then

$$
\alpha_{3}-\alpha_{2}=\underbrace{\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}-\alpha_{2}\right)}_{\in \mathbb{Q}} \underbrace{\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{3}-\alpha_{1}\right)^{-1}}_{\in \mathbb{Q}\left(\alpha_{1}\right)} \in \mathbb{Q}\left(\alpha_{1}\right) .
$$

Then

$$
\alpha_{3}=\frac{1}{2}(\underbrace{\alpha_{2}+\alpha_{3}}_{\in \mathbb{Q}\left(\alpha_{1}\right)}+\underbrace{\alpha_{3}-\alpha_{2}}_{\in \mathbb{Q}\left(\alpha_{1}\right)}) \in \mathbb{Q}\left(\alpha_{1}\right),
$$

and so $\alpha_{2}=\alpha_{3}+\alpha_{2}-\alpha_{3} \in \mathbb{Q}\left(\alpha_{1}\right)$. Hence all roots of $f(x)$ are in $\mathbb{Q}\left(\alpha_{1}\right)$ and so $E=\mathbb{Q}\left(\alpha_{1}\right)$. Since f is irreducible and α_{1} is a root of f, we conclude that

$$
[E: \mathbb{Q}]=\left[\mathbb{Q}\left(\alpha_{1}\right): \mathbb{Q}\right]=\operatorname{deg}(f)=3
$$

(d) If $\sqrt{D} \notin \mathbb{Q}$, then the minimal polynomial of \sqrt{D} over \mathbb{Q} is $x^{2}-D$ and so $[\mathbb{Q}(\sqrt{D}): \mathbb{Q}]=\operatorname{deg}\left(x^{2}-D\right)=2$. Assume to a contradiction that $\alpha_{i} \in \mathbb{Q}(\sqrt{D})$ for some $i \in\{1,2,3\}$. Then $\mathbb{Q} \subseteq \mathbb{Q}\left(\alpha_{i}\right) \subseteq \mathbb{Q}(\sqrt{D})$. But $\left[\mathbb{Q}\left(\alpha_{i}\right): \mathbb{Q}\right]=\operatorname{deg}(f)=3$, since f is irreducible and α_{i} is a root of f. Hence

$$
2=[\mathbb{Q}(\sqrt{D}): \mathbb{Q}]=\left[\mathbb{Q}(\sqrt{D}): \mathbb{Q}\left(\alpha_{1}\right)\right]\left[\mathbb{Q}\left(\alpha_{1}\right): \mathbb{Q}\right]=\left[\mathbb{Q}(\sqrt{D}): \mathbb{Q}\left(\alpha_{1}\right)\right] \cdot 3
$$

which is a contradiction. Following the proof of the case $\sqrt{D} \in \mathbb{Q}$, we can show that $\alpha_{2}, \alpha_{3} \in$ $\mathbb{Q}\left(\sqrt{D}, \alpha_{1}\right)$. Hence $\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \subseteq \mathbb{Q}\left(\sqrt{D}, \alpha_{1}\right)$. On the other hand, we have

$$
\sqrt{D}=\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}-\alpha_{2}\right) \in \mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)
$$

and so $\mathbb{Q}\left(\sqrt{D}, \alpha_{1}\right) \subseteq \mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$. It follows that

$$
E=\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\mathbb{Q}\left(\sqrt{D}, \alpha_{1}\right)
$$

Hence $[E: \mathbb{Q}]=\left[\mathbb{Q}\left(\sqrt{D}, \alpha_{1}\right): \mathbb{Q}\right]$. Since none of the roots of f are in $\mathbb{Q}(\sqrt{D})$, and since f has degree 3 , it follows that f is irreducible over $\mathbb{Q}(\sqrt{D})$. Hence

$$
\left[\mathbb{Q}\left(\sqrt{D}, \alpha_{1}\right): \mathbb{Q}(\sqrt{D})\right] \operatorname{deg}(f)=3
$$

Therefore, we have

$$
[E: \mathbb{Q}]=\left[\mathbb{Q}\left(\sqrt{D}, \alpha_{1}\right): \mathbb{Q}\right]=\left[\mathbb{Q}\left(\sqrt{D}, \alpha_{1}\right): \mathbb{Q}(\sqrt{D})\right][\mathbb{Q}(\sqrt{D}): \mathbb{Q}]=3 \cdot 2=6,
$$

as required.
Problem 15. (Exercise 16.1 .8 in the book.) Show that over any field $K \supseteq \mathbb{Q}$ the polynomial $x^{3}-3 x+1$ is either irreducible or splits into linear factors.

Solution. Let $f(x)=x^{3}-3 x+1$. By Theorem 3.7 we have that any root of f is an integer dividing 1 . Since $f(1)=-1$ and $f(-1)=3$, we conclude that f has no roots in \mathbb{Q}. Since $\operatorname{deg}(f)=3$ we conclude that f is irreducible over \mathbb{Q}. Let $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{C}$ be the roots of f and let E be the splitting field of f over \mathbb{Q}. Using Problem 14(a), we compute

$$
D=-\left(4(-3)^{3}+27\right)=-(4(-27)+27)=81
$$

and we have that $\sqrt{D}=\sqrt{81}=9 \in \mathbb{Q}$. Hence by Problem 14 (c) we have that $[E: \mathbb{Q}]=3$. Moreover, for every $i \in\{1,2,3\}$ we have $\left[\mathbb{Q}\left(\alpha_{i}\right): \mathbb{Q}\right]=\operatorname{deg}(f)=3$ since f is irreducible with α_{i} as a root. Hence

$$
3=[E: \mathbb{Q}]=\left[E: \mathbb{Q}\left(\alpha_{i}\right)\right]\left[\mathbb{Q}\left(\alpha_{i}\right): \mathbb{Q}\right]=\left[E: \mathbb{Q}\left(\alpha_{i}\right)\right] \cdot 3
$$

and so $\mathbb{Q}\left(\alpha_{i}\right)=E$.
Now assume that f is not irreducible over a field $K \supseteq \mathbb{Q}$ and we show that f splits into linear factors in K. Since f is not irreducible over K and since $\operatorname{deg}(f)=3$, it follows that K contains a root α_{i} of f. Hence $E=\mathbb{Q}\left(\alpha_{i}\right) \subseteq K$. Since K contains the splitting field of f, we conclude that f splits into linear factors in K, as required.

Problem 16. (Exercise 16.2.2 in the book.) Is $\mathbb{R} \subseteq \mathbb{R}(\sqrt{-5})$ a normal field extension?
Solution. We have that $\sqrt{-5}$ is the root of $x^{2}+5 \in \mathbb{R}[x]$ and that $x^{2}+5=(x-\sqrt{-5})(x+\sqrt{-5})$ in $\mathbb{R}[x]$. Hence $\mathbb{R}(\sqrt{-5})$ is the splitting field of $x^{2}+5$ and so $\mathbb{R} \subseteq \mathbb{R}(\sqrt{-5})$ is normal.

Problem 17. (Exercise 16.2.3 in the book.) Let E be a normal extension of F and let K be a subfield of E containing F. Show that E is a normal extension over K. Give an example to show that K need not be a normal extension of F.

Solution. We have field extensions $F \subseteq K \subseteq E$ with $F \subseteq E$ being normal. Therefore, E is the splitting field of a collection of polynomials $\left\{f_{i}(x) \in F[x] \mid i \in I\right\}$. But the polynomials $f_{i}(x)$ belong to $K[x]$ as well and so E is also the splitting field of $\left\{f_{i}(x) \in K[x] \mid i \in I\right\}$. Hence $K \subseteq E$ is normal.

Now consider the field extensions $\mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$, that is $F=\mathbb{Q}, K=\mathbb{R}$ and $E=\mathbb{C}$. The field extensions $\mathbb{Q} \subseteq \mathbb{C}$ and $\mathbb{R} \subseteq \mathbb{C}$ are normal by Theorem 8.5. On the other hand, $\mathbb{Q} \subseteq \mathbb{R}$ is not normal by Example 8.6(2).

Problem 18. (Exercise 16.2.4 in the book.) Let $F=\mathbb{Q}(\sqrt{2})$ and $E=\mathbb{Q}(\sqrt[4]{2})$. Show that E is a normal extension of F, F is a normal extension of \mathbb{Q}, but E is not a normal extension of \mathbb{Q}.

Solution. The field extension $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2})$ is normal, as it is the splitting field of $x^{2}-2 \in \mathbb{Q}[x]$ (the roots of $x^{2}-2$ are $\sqrt{2},-\sqrt{2} \in \mathbb{Q}(\sqrt{2})$.)

The field extension $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt[4]{2})$ is normal, as it is the splitting field of $x^{2}-\sqrt{2} \in \mathbb{Q}(\sqrt{2})[x]$ (the roots of $x^{2}-\sqrt{2}$ are $\sqrt[4]{2},-\sqrt[4]{2} \in \mathbb{Q}(\sqrt[4]{2})$.)

Regarding the field extension $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[4]{2})$, note that the irreducible polynomial $x^{4}-2 \in \mathbb{Q}[x]$ (Eisenstein criterion for $p=2$) has two root in $\mathbb{Q}(\sqrt[4]{2})$, namely $\sqrt[4]{2}$ and $-\sqrt[4]{2}$, but it does not have all of its roots in $\mathbb{Q}(\sqrt[4]{2})$ since its other two roots, $i \sqrt[4]{2}$ and $-i \sqrt[4]{2}$ are not real. By Theorem 8.5 we conclude that the extension $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[4]{2})$ is not normal.

Problem 19. (Exercise 16.2 .6 in the book.) Let $E_{i}, i \in \Lambda$ be a family of normal extensions of a field F in some extension K of F. Show that $E:=\bigcap_{i \in \Lambda} E_{i}$ is also a normal extension of F.

Solution. Let $f(x) \in F[x]$ be an irreducible polynomial that has a root $\alpha_{1} \in E$. By Theorem 8.5 we need to show that it has all of its roots in E. Since $\alpha_{1} \in E=\bigcap_{i \in \Lambda} E_{i}$, we have that $\alpha_{1} \in E_{i}$ for all $i \in \Lambda$. Hence $f(x)$ has a root in E_{i}. Since $F \subseteq E_{i}$ is normal for all $i \in \Lambda$, we have that $f(x)$ has all of its roots in E_{i} for all $i \in \Lambda$ by Theorem 8.5. Hence for every $i \in \Lambda$, the roots of f, say $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, belong to E_{i}. We conclude that $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \bigcap_{i \in \Lambda} E_{i}=E$, as required.

Problem 20. (Exam June 2014, Problem 5.)
(a) Let $\alpha=\sqrt{2+\sqrt{2}} \in \mathbb{R}^{+}$. Find the minimal polynomial of α over \mathbb{Q}.
(b) Show that $\mathbb{Q}(\alpha)$ is a normal extension of \mathbb{Q}. (Hint: Consider $\alpha \sqrt{2-\sqrt{2}}$.)

Solution.

(a) We have

$$
\begin{aligned}
\alpha^{2}=2+\sqrt{2} & \Longrightarrow \alpha^{2}-2=\sqrt{2} \\
& \Longrightarrow\left(\alpha^{2}-2\right)^{2}=(\sqrt{2})^{2} \\
& \Longrightarrow \alpha^{4}-4 \alpha^{2}+4=2 \\
& \Longrightarrow \alpha^{4}-4 \alpha^{2}+2=0 .
\end{aligned}
$$

Hence α is a root of $f(x)=x^{4}-4 x^{2}+2 \in \mathbb{Q}[x]$. This is irreducible over \mathbb{Q} by Eisenstein criterion for $p=2$ and is a monic polynomial. Hence f is the minimal polynomial of α over \mathbb{Q}.
(b) It is enough to show that $\mathbb{Q}(\alpha)$ is the splitting field of $f(x)=x^{4}-4 x^{2}+2$ over \mathbb{Q}. To show this we need to show that all the roots of f are in $\mathbb{Q}(\alpha)$. To find the roots of f in \mathbb{C} we have

$$
f(x)=x^{4}-4 x^{2}+2=x^{4}-4 x^{2}+4-2=\left(x^{2}-2\right)^{2}-2=\left(x^{2}-2-\sqrt{2}\right)\left(x^{2}-2+\sqrt{2}\right)
$$

Hence the roots of f in \mathbb{C} are

$$
\alpha=\sqrt{2+\sqrt{2}}, \quad-\alpha=-\sqrt{2+\sqrt{2}}, \quad \beta:=\sqrt{2-\sqrt{2}}, \quad-\beta=-\sqrt{2-\sqrt{2}}
$$

Hence it is enough to show that $\beta=\sqrt{2-\sqrt{2}} \in \mathbb{Q}(\alpha)$. We compute

$$
\alpha \beta=\sqrt{2+\sqrt{2}} \sqrt{2-\sqrt{2}}=\sqrt{(2+\sqrt{2})(2-\sqrt{2})}=\sqrt{4-(\sqrt{2})^{2}}=\sqrt{4-2}=\sqrt{2}
$$

Hence $\beta=\frac{\alpha}{\sqrt{2}}$ and it is enough to show that $\sqrt{2} \in \mathbb{Q}(\alpha)$. We have $\alpha^{2}=2+\sqrt{2}$ and so $\sqrt{2}=\alpha^{2}-2 \in$ $\mathbb{Q}(\alpha)$, which completes the proof.

