Galois theory - Problem Set 2

To be solved on Friday 10.02

Problem 1. (Exercise 15.3.2 in the book.) Prove that $\sqrt{2}$ and $\sqrt{3}$ are algebraic over \mathbb{Q} . Find the degree of

- (a) $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q} .
- (b) $\mathbb{Q}(\sqrt{3})$ over \mathbb{Q} .
- (c) $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over \mathbb{Q} .
- (d) $\mathbb{Q}(\sqrt{2} + \sqrt{3})$ over \mathbb{Q} .

Solution. Since $\sqrt{2}$ is a root of $f(x) = x^2 - 2 \in \mathbb{Q}[x]$ and $\sqrt{3}$ is a root of $g(x) = x^2 - 3 \in \mathbb{Q}[x]$, we have that $\sqrt{2}$ and $\sqrt{3}$ are algebraic over \mathbb{Q} . Moreover, both of these polynomials are have no root in \mathbb{Q} and so they are irreducible by Lemma 3.4(e). Hence by Theorem 4.6 we have

$$[\mathbb{Q}(\sqrt{2}:\mathbb{Q})] = \deg(f) = 2$$
 and $[\mathbb{Q}(\sqrt{3}:\mathbb{Q})] = \deg(g) = 2$.

This solves (a) and (b). For $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}]$, notice that we have by Example 5.5 that

$$[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}] = [\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 2\cdot 2 = 4.$$

Finally

$$\mathbb{Q}(\sqrt{2}+\sqrt{3})\subseteq\mathbb{Q}(\sqrt{2},\sqrt{3}),$$

since $\sqrt{2} + \sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$. On the other hand, we have

$$(\sqrt{2} + \sqrt{3})(\sqrt{2} - \sqrt{3}) = 4 - 3 = 1,$$

and so $\sqrt{2} - \sqrt{3} = (\sqrt{2} + \sqrt{3})^{-1} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$. Then

$$\sqrt{2} = \frac{1}{2} \left(\underbrace{\frac{\sqrt{2} + \sqrt{3}}{\mathbb{Q}} + \underbrace{\sqrt{2} - \sqrt{3}}_{\in \mathbb{Q}(\sqrt{2} + \sqrt{3})}}_{\in \mathbb{Q}(\sqrt{2} + \sqrt{3})} \right)$$

and hence $\sqrt{2} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$. Then

$$\sqrt{3} = \underbrace{\sqrt{2} + \sqrt{3}}_{\in \mathbb{Q}(\sqrt{2} + \sqrt{3})} - \underbrace{\sqrt{2}}_{\in \mathbb{Q}(\sqrt{2} + \sqrt{3})}$$

and so $\sqrt{3} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$ as well. Thus $\mathbb{Q}(\sqrt{2}, \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2} + \sqrt{3})$ and we conclude that $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$ and so

$$[\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}]=[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}]=4.$$

Problem 2. (Exercise 15.3.4 in the book) Find a suitable number α such that

- (a) $\mathbb{Q}(\sqrt{2}, \sqrt{5}) = \mathbb{Q}(\alpha)$.
- (b) $\mathbb{Q}(\sqrt{3}, i) = \mathbb{Q}(\alpha)$.

Solution. We first the more general claim if $a, b \in \mathbb{C}$ satisfy $a^2 - b^2 \in \mathbb{Q}$, then $\mathbb{Q}(\sqrt{a}, \sqrt{b}) = \mathbb{Q}(\sqrt{a} + \sqrt{b})$. Since $\sqrt{a} + \sqrt{b} \in \mathbb{Q}(\sqrt{a}, \sqrt{b})$, we have that $\mathbb{Q}(\sqrt{a} + \sqrt{b}) \subseteq \mathbb{Q}(\sqrt{a}, \sqrt{b})$. For the other direction we have

$$(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) = a^2 - b^2 \in \mathbb{Q}(\alpha)$$

and so

$$(\sqrt{a} - \sqrt{b}) = \frac{a^2 - b^2}{\sqrt{a} - \sqrt{b}} \in \mathbb{Q}(\sqrt{a} + \sqrt{b}).$$

Then

$$\sqrt{a} = \frac{1}{2} \left(\underbrace{\sqrt{a} + \sqrt{b}}_{\in \mathbb{Q}(\sqrt{a} + \sqrt{b})} + \underbrace{\sqrt{a} - \sqrt{b}}_{\in \mathbb{Q}(\sqrt{a} + \sqrt{b})} \right)$$

and hence $\sqrt{a} \in \mathbb{Q}(\sqrt{a} + \sqrt{b})$. Then

$$\sqrt{b} = \underbrace{\sqrt{a} + \sqrt{b}}_{\in \mathbb{Q}(\sqrt{a} + \sqrt{b})} - \underbrace{\sqrt{a}}_{\in \mathbb{Q}(\sqrt{a} + \sqrt{b})}$$

and so $\sqrt{b} \in \mathbb{Q}(\sqrt{a} + \sqrt{b})$ as well. Since $\sqrt{a}, \sqrt{b} \in \mathbb{Q}(\sqrt{a} + \sqrt{b})$, we have that $\mathbb{Q}(\sqrt{a}, \sqrt{b}) \subseteq \mathbb{Q}(\sqrt{a} + \sqrt{b})$, which shows the claim.

- (a) In this exercise we have a=2 and b=5 and $2^2-5^2=-21\in\mathbb{Q}$. Hence by our general statement above we can pick $\alpha=\sqrt{2}+\sqrt{5}$.
- (b) In this exercise we have a=3 and $b=i=\sqrt{-1}$ and $3^2-\sqrt{-1}^2=10\in\mathbb{Q}$. Hence by our general statement above we can pick $\alpha=\sqrt{3}+i$.

Problem 3. (Exam June 2014, Problem 1.)

- (a) Write down the irreducible polynomials over \mathbb{Z}_2 of degrees two and three, respectively.
- (b) How many irreducible polynomials of degree four are there over \mathbb{Z}_2 ?

Solution.

(a) Let $f(x) = a + bx + cx^2 + dx^3 \in \mathbb{Z}_2[x]$ be irreducible and of degree 2 or 3. Equivalently, by Lemma 3.4(c), we have that f has no roots if \mathbb{Z}_2 . Since $f(x) \in \mathbb{Z}_2[x]$, we have that $a, b, c, d \in \{0, 1\}$. If a = 0, then f(0) = 0 and so we have a = 1. If an odd number of b, c and d are equal to 1, then f(1) = 0. Hence we have that an even number of b, c and d are equal to 1. Since f(x) has degree at least 2, at least one of c and d is equal to 1. Since at least one of c and d is equal to 1, we conclude that two of b, c and d must be equal to 1. Hence the irreducible polynomials of degree 2 or 3 in $\mathbb{Z}_2[x]$ are

$$1 + x + x^2, 1 + x + x^3, 1 + x^2 + x^3.$$

(b) Now let $f(x) = a + bx + cx^2 + dx^3 + x^4 \in \mathbb{Z}_2[x]$ be irreducible. By Lemma 3.4(b), this implies that f has no roots if \mathbb{Z}_2 . Since $f(x) \in \mathbb{Z}_2[x]$, we have that $a, b, c, d \in \{0, 1\}$. If a = 0, then f(0) = 0 and so we have a = 1. Moreover, if an even number of b, c and d are equal to 1, then f(1) = 0. Hence either one of b, c and d is equal to 1, or all three of them are equal to 1. We conclude that

$$f(x) \in \{1 + x + x^4, 1 + x^2 + x^4, 1 + x^3 + x^4, 1 + x + x^2 + x^3 + x^4\} =: \mathcal{P},$$

and it remains to check which of these four polynomials in \mathcal{P} are irreducible. Hence we want to check which of these four polynomials in \mathcal{P} can be written as a product g(x)h(x) with $\deg(g) \geq 1$ and $\deg(h) \geq 1$. The polynomials of degree 1 in $\mathbb{Z}_2[x]$ are x and 1+x and both have a root in \mathbb{Z}_2 . Hence g(x) and h(x) cannot be of degree 1 since none of the polynomials in \mathcal{P} have roots in \mathbb{Z}_2 . Therefore $\deg(g) \geq 2$ and $\deg(h) \geq 2$. Since polynomials in \mathcal{P} have degree 4, we conclude that

 $\deg(g) = \deg(h) = 2$. By part (a) we know that the only polynomial of degree 2 with no roots in \mathbb{Z}_2 is $1 + x + x^2$. Hence $q(x) = h(x) = 1 + x + x^2$ which gives

$$(1+x+x^2)(1+x+x^2) = 1+x+x^2+x+x^2+x^3+x^2+x^3+x^4=1+x^2+x^4 \in \mathcal{P}.$$

We conclude that the rest of the polynomials in \mathcal{P} are irreducible, and so the irreducible polynomials of degree four in \mathbb{Z}_2 are

$$1 + x + x^4, 1 + x^3 + x^4, 1 + x + x^2 + x^3 + x^4.$$

Problem 4. (Exam June 2014, Problem 3.) Let $f(x) \in F[x]$ be a nonzero polynomial over the field F with various properties as described below. Let $\alpha \in \overline{F}$, where \overline{F} denotes the algebraic closure of F.

- (a) Let $f(\alpha) = 0$. Assume that whenever $g(\alpha) = 0$ for some nonzero $g(x) \in F[x]$, then $\deg(f) \leq \deg(g)$. Show that f(x) is irreducible over F.
- (b) Show the converse of (a), that is: Assume f(x) is irreducible over F and $f(\alpha) = 0$. Let $g(\alpha) = 0$ for some nonzero $g(x) \in F[x]$. Show that $\deg(f) \leq \deg(g)$.

Solution.

(a) Assume to a contradiction that f(x) is reducible over F. Then f(x) = g(x)h(x) with $\deg(g) \ge 1$ and $\deg(h) \ge 1$. Since $f(\alpha) = 0$, we have that $g(\alpha) = 0$ or $h(\alpha) = 0$. Without loss of generality assume that $g(\alpha) = 0$. Then by assumption we have $\deg(f) \le \deg(g)$. But

$$\deg(g) = \deg(f) - \deg(h) \le \deg(f) - 1,$$

gives a contradiction. Hence f(x) is irreducible over F.

(b) Let p(x) be the minimal polynomial of α over F. Then $\deg(p) \leq \deg(f)$ and so by division algorithm there exist polynomials $q(x), r(x) \in F[x]$ with f(x) = q(x)p(x) + r(x) and $\deg(r) < \deg(p)$. Since

$$0 = f(\alpha) = g(\alpha)p(\alpha) + r(\alpha) = g(\alpha) \cdot 0 + r(\alpha) = r(\alpha),$$

we conclude that α is a root of r(x). Since $\deg(r) < \deg(p)$ and p(x) is the minimal polynomial of α over F, we conclude that r(x) = 0. Then f(x) = q(x)p(x) and f irreducible implies that $q(x) \in F$ or $p(x) \in F$. Since p(x) is irreducible, we conclude that $p(x) \in F$. Hence $\deg(f) = \deg(p)$. Now let $g(\alpha) = 0$ for some nonzero $g(x) \in F[x]$. Then $\deg(p) \le \deg(g)$ since p(x) is the minimal polynomial of α over F. Since $\deg(f) = \deg(p)$, the claim follows.

Problem 5. (Exam May 2013, Problem 3.)

- (a) Let α be an algebraic number over the field F such that $[F(\alpha):F]$ is an odd number. Show that this implies that $F(\alpha^2) = F(\alpha)$.
- (b) Give an example to show that the converse implication is not true (Hint: Cyclotomic extensions.)

Solution.

(a) Notice that $F(\alpha^2) \subseteq F(\alpha)$. Consider the polynomial $f(x) = x^2 - \alpha^2 \in F(\alpha^2)[x]$. Then α is a root of f(x) and so $[F(\alpha) : F(\alpha^2)] \le 2$. Assume to a contradiction that $[F(\alpha) : F(\alpha^2)] = 2$. Then the field extensions $F \subseteq F(\alpha^2) \subseteq F(\alpha)$ give

$$[F(\alpha):F] = [F(\alpha):F(\alpha^2)][F(\alpha^2):F] = 2[F(\alpha^2):F],$$

contradicting $[F(\alpha):F]$ being odd. Hence $[F(\alpha):F(\alpha^2)]<2$ from which it follows that $[F(\alpha):F(\alpha^2)]=1$ or $F(\alpha)=F(\alpha)$.

(b) The roots of $x^3 - 1 = (x - 1)(x^2 + x + 1) \in \mathbb{R}[x]$ are 1, ω and ω^2 , where $\omega = e^{\frac{2\pi i}{3}}$. Since $(\omega^2)^2 = \omega^4 = \omega$, we have that $\mathbb{R}(\omega) = \mathbb{R}(\omega^2)$. But the polynomial $x^2 + x + 1$ is irreducible over \mathbb{R} since its roots ω and ω^2 are not real. Hence

$$[\mathbb{R}(\omega):\mathbb{R}] = \deg(x^2 + x + 1) = 2,$$

which is not odd.

Problem 6. (Exam June 2015, Problem 3.) Let $F \subseteq E$ be a field extension of degree [E:F]=n.

- (a) Show that if n is a prime number, then there is no proper intermediate field between E and F (that is, no field K with $F \subseteq K \subseteq E$ and $E \neq K \neq F$). Deduce that if $\alpha \in E \setminus F$, then the minimal polynomial of α in F[x] has degree n.
- (b) Let $E = F(\alpha, \beta)$, where α has minimal polynomial in F[x] of degree d_1 , and β has minimal polynomial in F[x] of degree d_2 . Show that if d_1 and d_2 are coprime (i.e. $gcd(d_1, d_2) = 1$), then $[E : F] = d_1d_2$.
- (c) Give an example where α and β are as in (b), and such that $\alpha\beta$ has minimal polynomial in F[x] of degree d_1 or d_2 . (Hint: consider $F = \mathbb{Q}$ with $\alpha = \sqrt[3]{2}$ and β a suitable root of unity.)

Solution.

(a) Let K be a field with $F \subseteq K \subseteq E$. Then

$$n = [E : F] = [E : K][K : F].$$

If n is a prime number, then either [E:K]=1 and so K=E or [K:F]=1 and so K=F. Now let $\alpha \in E \setminus F$. Since $F \subseteq E$ is a finite extension, it is also algebraic and so α is algebraic over F. Hence the minimal polynomial p(x) of α over F exists. Then $F \subseteq F(\alpha) \subseteq E$ implies that $F(\alpha) = F$ or $F(\alpha) = E$. Since $\alpha \notin F$, we have $F(\alpha) = E$. Then

$$deg(p) = [F(\alpha) : F] = [E : F] = n,$$

as claimed.

(b) Let $f_{\alpha}(x), f_{\beta}(x) \in F[x]$ be the minimal polynomials of α and β over F. Then $\deg(f_{\alpha}) = d_1$ and $\deg(f_{\beta}) = d_2$. Moreover, we have

$$[F(\alpha):F] = \deg(f_{\alpha}) = d_1 \text{ and } [F(\beta):F] = \deg(f_{\beta}) = d_2.$$

Notice that $f_{\alpha}(x) \in F(\beta)[x]$ and f_{α} has α as a root. Let $m := [F(\alpha, \beta) : F(\beta)]$. Then

$$m = [F(\alpha, \beta) : F(\beta)] \le \deg(f_{\alpha}) = d_1,$$

and similarly we obtain $k := [F(\alpha, \beta) : F(\alpha)] \le d_2$. Then we have

$$n = [E : F] = [F(\alpha, \beta) : F] = [F(\alpha, \beta) : F(\beta)][F(\beta) : F] = md_2.$$

Similarly, we obtain $n = kd_1$. Hence $md_2 = kd_1$. Since $d_2 \mid kd_1$ and $\gcd(d_1, d_2) = 1$, we obtain $d_2 \mid k$. Since $k \leq d_2$, we obtain $k = d_2$ and so $[E:F] = n = d_1d_2$ as required.

(c) Let $\alpha=\sqrt[3]{2}$ and let $\beta=e^{\frac{2\pi i}{3}}$. Then the minimal polynomial of α over $\mathbb Q$ is x^3-2 (is irreducible by Eisenstein criterion for p=2, is monic, and has $\sqrt[3]{2}$ as a root), and the minimal polynomial of β over $\mathbb Q$ is x^2+x+1 (is irreducible since its roots $\beta,\beta^2\not\in\mathbb Q$ and has degree 2, is monic, and has β as a root). Then the degree of x^3-2 is 3 and the degree of x^2+x+1 is 2 and $\gcd(2,3)=1$. On the other hand the minimal polynomial of $\alpha\beta=e^{\frac{2\pi i}{3}}\sqrt[3]{2}$ over $\mathbb Q$ is again x^3-2 (is irreducible and monic and has $e^{\frac{2\pi i}{3}}\sqrt[3]{2}$ as a root).

Problem 7. (Exercise 15.4.8 in the book.) Let F be a field and let $n \ge 1$. Let $f(x) = x^n - \alpha \in F[x]$ be an irreducible polynomial over F and let $b \in K$ be a root of f, where $F \subseteq K$ is a field extension. If m is a positive integer such that $m \mid n$, find the degree of the minimal polynomial of b^m over F.

Solution. Since f is irreducible and monic, f is the minimal polynomial of b over F. It follows that

$$[F(b):F] = \deg(f) = n.$$

Consider the sequence of field extensions

$$F \subseteq F(b^m) \subseteq F(b)$$
.

Let n = mk. Let $g(x) = x^k - a \in F[x]$ and $h(x) = x^m - b^m \in F(b^m)[x]$. Then b^m is a root of g(x) and b is a root of h(x). Hence

$$[F(b^m): F] \le \deg(g) = k \text{ and } [F(b): F(b^m)] \le \deg(h) = m.$$

Using Theorem 4.3 we obtain

$$mk = n = [F(b) : F] = [F(b) : F(b^m)][F(b^m) : F] \le mk$$

which implies that $[F(b^m):F]=k$. Hence the degree of the minimal polynomial of b^m over F is $\frac{n}{m}$.

Problem 8. (Exam August 2013, Problem 4.) Let $f(x) \in F[x]$ be an irreducible polynomial of prime degree p over the field F, with $\operatorname{char}(F) = 0$ (Warning: I don't think the characteristic of F plays a role.). Let $K = F(\alpha)$, where α is a root of an irreducible polynomial $g(x) \in F[x]$ of prime degree q over the field F. Assume f(x) is reducible in K[x]. Show that p = q.

Solution. Let β be a root of f in the algebraic closure \overline{F} of F. Consider the field extension $F \subseteq F(\alpha, \beta)$. Using

$$F \subseteq F(\alpha) \subseteq F(\alpha, \beta)$$
,

we first have that $[F(\alpha): F] = \deg(g) = q$ since g(x) is irreducible over F and has α as a root, and we also have that $[F(\alpha, \beta): F(\alpha)] = d < p$ since f(x) is reducible in $F(\alpha)[x] = K[x]$, and so the minimal polynomial of β over $F(\alpha)$ has degree strictly less than $\deg(f) = p$. Hence

$$[F(\alpha, \beta) : F] = [F(\alpha, \beta) : F(\alpha)][F(\alpha) : F] = dq.$$

Using

$$F \subseteq F(\beta) \subseteq F(\alpha, \beta),$$

we first have that $[F(\beta):F] = \deg(f) = p$, since f(x) is irreducible over F and has β as a root, and we also have that $[F(\alpha,\beta):F(\beta)] = d' \le q$ since $g(x) \in F(\beta)[x]$ has α as a root and $\deg(g) = q$. Hence

$$[F(\alpha, \beta) : F] = [F(\alpha, \beta) : F(\beta)][F(\beta) : F] = d'p.$$

We conclude that dq = d'p. Then $p \mid (dq)$ and so $p \mid d$ or $p \mid q$ since p is prime. But d < p and so we have that $p \mid q$. Since p and q are both prime numbers, we conclude that p = q.

Problem 9. (Warning: Needs field of fractions.) (Exercise 15.4.10 in the book.) Give an example of a field E containing a proper subfield K such that E is embeddable in K and [E:K] is finite.

Solution. Consider the field

$$E \coloneqq \mathbb{Q}(x) = \left\{ \frac{p(x)}{q(x)} \mid p(x), q(x) \in \mathbb{Q}[x], q(x) \neq 0 \right\},\,$$

with standard addition and multiplication. Similarly, define

$$K := \mathbb{Q}(x^2) = \left\{ \frac{p(x^2)}{q(x^2)} \mid p(x), q(x) \in \mathbb{Q}[x], q(x) \neq 0 \right\}.$$

We claim that $K \subseteq E$. In particular, it is enough to show that $x \notin K$. Indeed, assume to a contradiction that $x \in \mathbb{Q}(x^2)$. Then there exist polynomials $p(x), q(x) \in \mathbb{Q}[x]$ such that

$$x = \frac{p(x^2)}{q(x^2)}$$

or that $xq(x^2) = p(x^2)$. But the right hand side is a polynomial of even degree, while the left hand side is a polynomial of odd degree and so we reach a contradiction. On the other hand, we have the field embedding

$$\phi: \mathbb{Q}(x) \to \mathbb{Q}(x^2), \ \phi\left(\frac{p(x)}{q(x)}\right) = \frac{p(x^2)}{q(x^2)}.$$

Now notice that $\mathbb{Q} \subseteq \mathbb{Q}(x^2) \subseteq \mathbb{Q}(x)$ gives

$$E = \mathbb{Q}(x) \subseteq \mathbb{Q}(x^2)(x) \subseteq \mathbb{Q}(x)(x) = E,$$

and so $E = \mathbb{Q}(x^2)(x) = K(x)$. Hence

$$[E:K] = [K(x):K] \ge 2,$$

where the last inequality follows since $x \notin K$. Since $f(y) = y^2 - x^2 \in K[y] (= \mathbb{Q}(x^2)[y])$ and since x is a root of f(y), we have that the $[K(x):K] \leq 2$. We conclude that [E:K] = 2 is finite.

Problem 10. (Exercise 16.1.1 in the book.) Construct splitting fields K over \mathbb{Q} for the polynomial f(x) and find the degree $[K:\mathbb{Q}]$ where f(x) is

- (a) $x^3 1$.
- (b) $x^4 + 1$.
- (c) $x^6 1$.
- (d) $(x^2-2)(x^3-3)$.

Solution.

- (a) Let $\omega = e^{\frac{2\pi i}{3}}$ be a primitive third root of unity. Then the roots of $x^3 1$ are ω , ω^2 and ω^3 and so $K = \mathbb{Q}(\omega)$. We have $x^3 1 = (x 1)(x^2 + x + 1)$, and $x^2 + x + 1$ is irreducible over \mathbb{Q} since its roots are $\omega, \omega^2 \notin \mathbb{Q}$. Hence the splitting field of $x^3 1$ over \mathbb{Q} is $K = \mathbb{Q}(\omega)$. Since $x^2 + x + 1$ is irreducible and monic, it is the minimal polynomial of ω over \mathbb{Q} and so $[K : \mathbb{Q}] = \deg(x^2 + x + 1) = 2$.
- (b) To find the roots of $x^4 + 1$ in \mathbb{C} we may write

$$x^4 + 1 = x^4 + 2x^2 + 1 - 2x^2 = (x^2 + 1)^2 - (\sqrt{2}x)^2 = (x^2 + 1 + \sqrt{2}x)(x^2 + 1 - \sqrt{2}x)$$

and so finding the roots of each second degree polynomial we obtain the roots

$$x_1 = \frac{1+i}{\sqrt{2}}, \ x_2 = \frac{-1+i}{\sqrt{2}}, \ x_3 = \frac{-1-i}{\sqrt{2}}, \ x_4 = \frac{1-i}{\sqrt{2}}.$$

We claim that $x^4 + 1$ is irreducible. Here are three ways to see this.

(i) Since all roots of $x^4 + 1$ are complex, there is only one possible factorization of $x^4 + 1$ into a product of polynomials, namely

$$x^4 + 1 = (ax^2 + bx + c)(dx^2 + ex + f)$$

for some $a, b, c, d, e, f \in \mathbb{Q}$. By computing the right hand side and equating the same degree terms we obtain an impossible system of equations.

(ii) Since all roots of $x^4 + 1$ are complex, there is only one possible factorization of $x^4 + 1$ into a product of polynomials, namely

$$x^4 + 1 = (ax^2 + bx + c)(dx^2 + ex + f)$$

for some $a, b, c, d, e, f \in \mathbb{Q}$. We have shown that

$$x^4 + 1 = (x^2 + \sqrt{2}x + 1)(x^2 - \sqrt{2}x + 1)$$

over \mathbb{R} . Moreover, the polynomials $x^2 + \sqrt{2}x + 1$ and $x^2 - \sqrt{2}x + 1$ are irreducible over \mathbb{R} since they have no roots in \mathbb{R} . Therefore, any possible factorization of $x^4 + 1$ in $\mathbb{Q}[x]$ as a product of two irreducible polynomials of degree 2 would differ up to a unit at most from the factorization in \mathbb{R} . This is impossible since $\sqrt{2} \notin \mathbb{Q}$.

(iii) Let $p(x) = x^4 + 1$ and compute $p(x+1) = x^4 + 4x^3 + 6x^2 + 4x + 2$. This is irreducible by Eisenstein criterion for p = 2 and so p(x) is irreducible as well.

Therefore $x^4 + 1$ is irreducible over \mathbb{Q} . Moreover, notice that $x_1^3 = x_2$, that $x_1^5 = x_3$, and that $x_1^7 = x_5$. Hence the splitting field of $x^4 + 1$ over \mathbb{Q} is $K = \mathbb{Q}(x_1)$. Since $x^4 + 1$ is irreducible and monic, it is the minimal polynomial of x_1 over \mathbb{Q} and so $[K : \mathbb{Q}] = 4$.

(c) We have $x^6 - 1 = (x - 1)(x^5 + x^4 + x^3 + x^2 + x + 1)$ and -1 is a root of the second factor. So we factorize further to obtain $x^6 - 1 = (x - 1)(x + 1)(x^4 + x^2 + 1)$. We have

$$x^4 + x^2 + 1 = x^4 + 2x^2 + 1 - x^2 = (x^2 + 1)^2 - x^2 = (x^2 + x + 1)(x^2 - x + 1)$$

and so finding the roots of each second degree polynomial we obtain that the roots of x^6-1 are

$$x_1 = -1$$
, $x_2 = 1$, $x_3 = \frac{1 + i\sqrt{3}}{2}$, $x_4 = \frac{-1 + i\sqrt{3}}{2}$, $x_5 = \frac{-1 - i\sqrt{3}}{2}$, $x_6 = \frac{1 - i\sqrt{3}}{2}$.

Hence the splitting field of $x^6 - 1$ over \mathbb{Q} is $K = \mathbb{Q}(i\sqrt{3})$. Since $x^2 + 3$ is irreducible, monic, and has $i\sqrt{3}$ as a root, it is the minimal polynomial of $i\sqrt{3}$ over \mathbb{Q} and so $[K:\mathbb{Q}] = 2$.

(d) The roots of $(x^2-2)(x^3-3)$ are

$$x_1 = \sqrt{2}, x_2 = -\sqrt{2}, x_3 = \omega \sqrt[3]{3}, x_4 = \omega^2 \sqrt[3]{3}, x_5 = \sqrt[3]{3},$$

where ω is a primitive third root of unity. Hence the splitting field of $(x^2 - 2)(x^3 - 3)$ over \mathbb{Q} is $K = \mathbb{Q}(\sqrt{2}, \sqrt[3]{3}, \omega)$. Consider the field extensions

$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt[3]{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt[3]{3}, \omega) = K. \tag{1}$$

We have

$$[\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = \deg(x^2 - 2) = 2. \tag{2}$$

We claim that the polynomial $x^3-3\in\mathbb{Q}(\sqrt{2})[x]$ is irreducible over $\mathbb{Q}(\sqrt{2})$. By Lemma 3.4(3) it is enough to show that x^3-3 has no roots in $\mathbb{Q}(\sqrt{2})$. The roots of x^3-3 are x_3 , x_4 and x_5 . Since x_3 and x_4 are not real, it is enough to show that $x_4=\sqrt[3]{3}\not\in\mathbb{Q}(\sqrt{2})$. Assume to a contradiction that $\sqrt[3]{3}\in\mathbb{Q}(\sqrt{2})$. Since $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$, there exist $a,b\in\mathbb{Q}$ such that

$$\sqrt[3]{3} = a + b\sqrt{2}$$

Raising both sides to the third power we obtain

$$3 = a^3 + 3a^2b\sqrt{2} + 6ab^2 + 2b^3\sqrt{2}.$$

which we can rearrange to

$$(a^3 + 6ab^2 - 3) + (3a^2b + 2b^3)\sqrt{2} = 0.$$

Since $1, \sqrt{2}$ is a \mathbb{Q} -basis of $\mathbb{Q}(\sqrt{2})$, we have that

$$a^3 + 6ab^2 - 3 = 0,$$

$$3a^2b + 2b^3 = 0.$$

If b=0, the first equation gives $a^3-3=0$ which is impossible since $a\in\mathbb{Q}$. Hence $b\neq 0$ and the second equation gives $3a^2+2b^2=0$, which is impossible in \mathbb{Q} (since $b\neq 0$). Hence we reach a contradiction. We conclude that $x^3-3\in\mathbb{Q}(\sqrt{2})[x]$ is irreducible over $\mathbb{Q}(\sqrt{2})$ and so

$$[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}(\sqrt{2})] = \deg(x^3 - 3) = 3.$$
(3)

Finally, recall from part (a) that the polynomial $x^2 + x + 1 \in \mathbb{Q}(\sqrt{2}, \sqrt{3})[x]$ has only the nonreal roots ω, ω^2 , and so none of them is in $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Hence $x^2 + x + 1$ is irreducible over $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ and so

$$[\mathbb{Q}(\sqrt{2}, \sqrt{3}, \omega) : \mathbb{Q}(\sqrt{2}, \sqrt{3})] = 2. \tag{4}$$

Using (1), (2), (3), (4) we conclude that $[K : \mathbb{Q}] = 2 \cdot 3 \cdot 2 = 12$.

Problem 11. (Exam June 2014, Problem 7.) Show that $\sqrt{2} + \sqrt[3]{3} \notin \mathbb{Q}$. (Hint: Consider an appropriate field extension of \mathbb{Q} .)

Solution. Assume to a contradiction that $\sqrt{2} + \sqrt[3]{3} \in \mathbb{Q}$. Then $\sqrt{2} + \sqrt[3]{3} \in \mathbb{Q}(\sqrt{2})$. In particular, we have

$$\sqrt[3]{3} = \underbrace{\sqrt{2} + \sqrt[3]{3}}_{\in \mathbb{Q}(\sqrt{2})} - \underbrace{\sqrt{2}}_{\in \mathbb{Q}(\sqrt{2})},$$

and so $\sqrt[3]{3} \in \mathbb{Q}(\sqrt{2})$. But this is not true, see the solution of Problem 10(d).

Problem 12. (Exercise 16.1.2 in the book.) Construct a splitting field for $x^3 + x + 1 \in \mathbb{Z}_2[x]$ and list all its elements.

Solution. By evaluating the polynomial $x^3 + x + 1$ at 0 and 1, we see that it has no roots in \mathbb{Z}_2 and hence it is irreducible (since its degree is 3). Let $\mathbb{Z}_2(\alpha)$ be a field extension of \mathbb{Z}_2 where α is a root of $x^3 + x + 1$, that is $\alpha^3 + \alpha + 1 = 0$. Then $[\mathbb{Z}_2(\alpha) : \mathbb{Z}_2] = \deg(x^3 + x + 1) = 3$, and $\{1, \alpha, \alpha^2\}$ is a \mathbb{Z}_2 -basis of $\mathbb{Z}_2(\alpha)$. By checking we see that α^2 is also a root of $x^3 + x + 1$ since

$$(\alpha^2)^3 + \alpha^2 + 1 = \alpha^6 + \alpha^2 + 1 = (1 + \alpha^2) + \alpha^2 + 1 = 0$$

where using $\alpha^3 + \alpha + 1 = 0$, we computed $\alpha^3 = -1 - \alpha = 1 + \alpha$ and so $\alpha^6 = 1 + \alpha^2$. Therefore $x^3 + x + 1$ has two roots in $\mathbb{Z}_2(\alpha)$ and hence it has all its roots in $\mathbb{Z}_2(\alpha)$ since its degree is 3. We conclude that $\mathbb{Z}_2(\alpha) = \{0, 1, \alpha, 1 + \alpha, \alpha^2, 1 + \alpha^2, \alpha + \alpha^2, 1 + \alpha + \alpha^2\}$ is the splitting field of $x^3 + x + 1$ over \mathbb{Z}_2 .

Problem 13. (Exercise 16.1.5 in the book.) Let E be the splitting field of a polynomial of degree n over a field F. Show that $[E:F] \leq n!$.

Solution. We use induction on $n \ge 1$. For the base case n = 1 we have that E = F and so $[E : F] = 1 \le 1!$. Assume now that the claim is true for all polynomials of degree at most n - 1 and we show that the claim holds for polynomials of degree n. Let $f(x) \in F[x]$ be a polynomial of degree n and E its splitting field. Let $\alpha_1, \ldots, \alpha_n$ be the roots of f in E (possibly with duplicates). Then $E = F(\alpha_1, \ldots, \alpha_n)$. Since $x - \alpha_1 \in F(\alpha_1)[x]$ divides f(x), the polynomial $g(x) = \frac{f(x)}{x - \alpha_1}$ is a well-defined polynomial in $F(\alpha_1)[x]$. Moreover, its degree is n - 1 and its roots are $\alpha_2, \ldots, \alpha_n$ and so its splitting field over $F(\alpha_1)$ is $F(\alpha_1)(\alpha_2, \ldots, \alpha_n) = E$. Hence by induction hypothesis we have $[E : F(\alpha_1)] \le (n-1)!$. On the other hand, α_1 is a root of $f(x) \in F[x]$ and so $[F(\alpha_1) : F] \le \deg(f) = n$. Then from the field extensions $F \subseteq F(\alpha_1) \subseteq E$ we obtain

$$[E:F] = [E:F(\alpha_1)][F(\alpha_1):F] < n(n-1)! = n!$$

as required.

Problem 14. Let $f(x) = x^3 + ax + b \in \mathbb{Q}[x]$. Let E be the splitting field of f. Let $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{C}$ be the roots of f (not necessarily distinct).

- (a) Define $D = (\alpha_2 \alpha_1)^2 (\alpha_3 \alpha_1)^2 (\alpha_3 \alpha_2)^2$. Show that $D = -(4a^3 + 27b^2)$.
- (b) Show that if f(x) is reducible, then $[E:\mathbb{Q}]=1$ or $[E:\mathbb{Q}]=2$.
- (c) (Exercise 16.1.3 in the book.) Show that if f(x) is irreducible and $\sqrt{D} \in \mathbb{Q}$, then $[E:\mathbb{Q}]=3$.
- (d) (Exercise 16.1.4 in the book.) Show that if f(x) is irreducible and $\sqrt{D} \notin \mathbb{Q}$, then $[E:\mathbb{Q}] = 6$.

Solution.

(a) We have $f(x) = (x - \alpha_1)(x - \alpha_2)(x - \alpha_3)$. Then

$$x^{3} + ax + b = (x - \alpha_{1})(x - \alpha_{2})(x - \alpha_{3})$$

$$= x^{3} - \alpha_{3}x^{2} - \alpha_{2}x^{2} - \alpha_{1}x^{2} + \alpha_{1}\alpha_{2}x + \alpha_{1}\alpha_{3}x + \alpha_{2}\alpha_{3}x - \alpha_{1}\alpha_{2}\alpha_{3}$$

$$= x^{3} - (\alpha_{1} + \alpha_{2} + \alpha_{3})x^{2} + (\alpha_{1}\alpha_{2} + \alpha_{1}\alpha_{3} + \alpha_{2}\alpha_{3})x - \alpha_{1}\alpha_{2}\alpha_{3},$$

from which we get

$$\alpha_1 + \alpha_2 + \alpha_3 = 0, (5)$$

$$\alpha_1 \alpha_2 + \alpha_1 \alpha_3 + \alpha_2 \alpha_3 = a,\tag{6}$$

$$-\alpha_1 \alpha_2 \alpha_3 = b. (7)$$

Using (5) we may eliminate α_3 from (6) and (7) to obtain

$$-(\alpha_1^2 + \alpha_1 \alpha_2 + \alpha_2^2) = a, (8)$$

$$\alpha_1 \alpha_2 (\alpha_1 + \alpha_2) = b. \tag{9}$$

Now we compute D:

$$(\alpha_{2} - \alpha_{1})^{2}(\alpha_{3} - \alpha_{1})^{2}(\alpha_{3} - \alpha_{2})^{2} \stackrel{(5)}{=} (\alpha_{2} - \alpha_{1})^{2}(\alpha_{2} + 2\alpha_{1})^{2}(\alpha_{1} + 2\alpha_{2})^{2}$$

$$= (\alpha_{1}^{2} - 2\alpha_{1}\alpha_{2} + \alpha_{2}^{2})(4\alpha_{1}^{2} + 4\alpha_{1}\alpha_{2} + \alpha_{2}^{2})(\alpha_{1}^{2} + 4\alpha_{1}\alpha_{2} + 4\alpha_{2}^{2})$$

$$\stackrel{(8)}{=} (-3\alpha_{1}\alpha_{2} - a)(3\alpha_{1}^{2} + 3\alpha_{1}\alpha_{2} - a)(3\alpha_{2}^{2} + 3\alpha_{1}\alpha_{2} - a)$$

$$= (-9\alpha_{1}^{3}\alpha_{2} - 9\alpha_{1}^{2}\alpha_{2}^{2} + 3a\alpha_{1}\alpha_{2} - 3a\alpha_{1}^{2} - 3a\alpha_{1}\alpha_{2} + a^{2})(3\alpha_{2}^{2} + 3\alpha_{1}\alpha_{2} - a)$$

$$= (-9\alpha_{1}^{2}\alpha_{2}(\alpha_{1} + \alpha_{2}) - 3a\alpha_{1}^{2} + a^{2})(3\alpha_{2}^{2} + 3\alpha_{1}\alpha_{2} - a)$$

$$\stackrel{(9)}{=} (-9b\alpha_{1} - 3a\alpha_{1}^{2} + a^{2})(3\alpha_{2}^{2} + 3\alpha_{1}\alpha_{2} - a)$$

$$= -27b\alpha_{1}\alpha_{2}^{2} - 27b\alpha_{1}^{2}\alpha_{2} + 9ab\alpha_{1} - 9a\alpha_{1}^{2}\alpha_{2}^{2} - 9a\alpha_{1}^{3}\alpha_{2} + 3a^{2}\alpha_{1}^{2} + 3a^{2}\alpha_{2}^{2} + 3a^{2}\alpha_{1}\alpha_{2} - a^{3}$$

$$= -27b\alpha_{1}\alpha_{2}(\alpha_{1} + \alpha_{2}) + 9ab\alpha_{1} - 9a\alpha_{1}^{2}\alpha_{2}(\alpha_{1} + \alpha_{2}) + 3a^{2}(\alpha_{1}^{2} + \alpha_{1}\alpha_{2} + \alpha_{2}^{2}) - a^{3}$$

$$\stackrel{(9)}{=} -27b^{2} + 9ab\alpha_{1} - 9ab\alpha_{1} + 3a^{2}(\alpha_{1}^{2} + \alpha_{1}\alpha_{2} + \alpha_{2}^{2}) - a^{3}$$

$$\stackrel{(8)}{=} -27b^{2} - 3a^{3} - a^{3}$$

$$= -(4a^{3} + 27b^{2})$$

as required.

(b) If f(x) is reducible, then it has a root in \mathbb{Q} , say α_1 . Then $f(x) = (x - \alpha_1)g(x)$ where g(x) has degree 2 and has α_2, α_3 as roots. We consider the cases g(x) reducible and g(x) irreducible separately.

If g(x) is reducible, it has a root in \mathbb{Q} , say α_2 . Then $g(x) = (x - \alpha_2)h(x)$ where h(x) has degree 1 and has α_3 as a root. It follows that $\alpha_3 \in \mathbb{Q}$ and so in this case $E = \mathbb{Q}$ and $[E : \mathbb{Q}] = [\mathbb{Q} : \mathbb{Q}] = 1$.

If g(x) is irreducible, then α_2 and α_3 do not belong in \mathbb{Q} . Then $\alpha_2 \in \mathbb{Q}(\alpha_2)$ and so $g(x) = (x - \alpha_2)h(x)$ in $\mathbb{Q}(\alpha_2)$ where h(x) has degree 1 and has α_3 as a root. It follows that $\alpha_3 \in \mathbb{Q}(\alpha_2)$ and so $E = \mathbb{Q}(\alpha_2, \alpha_3) = \mathbb{Q}(\alpha_2)$. Since g(x) is irreducible and $\alpha_2 \notin \mathbb{Q}$ is a root of g, it follows that $[E : \mathbb{Q}] = [\mathbb{Q}(\alpha_2) : \mathbb{Q}] = \deg(g) = 2$.

(c) By part (a) we have that $\sqrt{D} = (\alpha_2 - \alpha_1)(\alpha_3 - \alpha_1)(\alpha_3 - \alpha_2) \in \mathbb{Q}$. Now consider $\mathbb{Q}(\alpha_1)$. By (5) we have $\alpha_2 + \alpha_3 = -\alpha_1 \in \mathbb{Q}(\alpha_1)$. By (7) we have $\alpha_2 \alpha_3 = -b\alpha_1^{-1} \in \mathbb{Q}(\alpha_1)$. Hence

$$(\alpha_2 - \alpha_1)(\alpha_3 - \alpha_1) = \underbrace{\alpha_2 \alpha_3}_{\in \mathbb{Q}(\alpha_1)} - \alpha_1 \underbrace{(\alpha_2 + \alpha_3)}_{\in \mathbb{Q}(\alpha_1)} + \alpha_1^2 \in \mathbb{Q}(\alpha_1).$$

Then

$$\alpha_3 - \alpha_2 = \underbrace{(\alpha_2 - \alpha_1)(\alpha_3 - \alpha_1)(\alpha_3 - \alpha_2)}_{\in \mathbb{Q}} \underbrace{(\alpha_2 - \alpha_1)(\alpha_3 - \alpha_1)^{-1}}_{\in \mathbb{Q}(\alpha_1)} \in \mathbb{Q}(\alpha_1).$$

Then

$$\alpha_3 = \frac{1}{2} (\underbrace{\alpha_2 + \alpha_3}_{\in \mathbb{Q}(\alpha_1)} + \underbrace{\alpha_3 - \alpha_2}_{\in \mathbb{Q}(\alpha_1)}) \in \mathbb{Q}(\alpha_1),$$

and so $\alpha_2 = \alpha_3 + \alpha_2 - \alpha_3 \in \mathbb{Q}(\alpha_1)$. Hence all roots of f(x) are in $\mathbb{Q}(\alpha_1)$ and so $E = \mathbb{Q}(\alpha_1)$. Since f is irreducible and α_1 is a root of f, we conclude that

$$[E:\mathbb{Q}] = [\mathbb{Q}(\alpha_1):\mathbb{Q}] = \deg(f) = 3.$$

(d) If $\sqrt{D} \notin \mathbb{Q}$, then the minimal polynomial of \sqrt{D} over \mathbb{Q} is $x^2 - D$ and so $[\mathbb{Q}(\sqrt{D}) : \mathbb{Q}] = \deg(x^2 - D) = 2$. Assume to a contradiction that $\alpha_i \in \mathbb{Q}(\sqrt{D})$ for some $i \in \{1, 2, 3\}$. Then $\mathbb{Q} \subseteq \mathbb{Q}(\alpha_i) \subseteq \mathbb{Q}(\sqrt{D})$. But $[\mathbb{Q}(\alpha_i) : \mathbb{Q}] = \deg(f) = 3$, since f is irreducible and α_i is a root of f. Hence

$$2 = [\mathbb{Q}(\sqrt{D}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{D}) : \mathbb{Q}(\alpha_1)][\mathbb{Q}(\alpha_1) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{D}) : \mathbb{Q}(\alpha_1)] \cdot 3,$$

which is a contradiction. Following the proof of the case $\sqrt{D} \in \mathbb{Q}$, we can show that $\alpha_2, \alpha_3 \in \mathbb{Q}(\sqrt{D}, \alpha_1)$. Hence $\mathbb{Q}(\alpha_1, \alpha_2, \alpha_3) \subseteq \mathbb{Q}(\sqrt{D}, \alpha_1)$. On the other hand, we have

$$\sqrt{D} = (\alpha_2 - \alpha_1)(\alpha_3 - \alpha_1)(\alpha_3 - \alpha_2) \in \mathbb{Q}(\alpha_1, \alpha_2, \alpha_3)$$

and so $\mathbb{Q}(\sqrt{D}, \alpha_1) \subseteq \mathbb{Q}(\alpha_1, \alpha_2, \alpha_3)$. It follows that

$$E = \mathbb{Q}(\alpha_1, \alpha_2, \alpha_3) = \mathbb{Q}(\sqrt{D}, \alpha_1).$$

Hence $[E:\mathbb{Q}] = [\mathbb{Q}(\sqrt{D}, \alpha_1):\mathbb{Q}]$. Since none of the roots of f are in $\mathbb{Q}(\sqrt{D})$, and since f has degree 3, it follows that f is irreducible over $\mathbb{Q}(\sqrt{D})$. Hence

$$[\mathbb{Q}(\sqrt{D}, \alpha_1) : \mathbb{Q}(\sqrt{D})] \deg(f) = 3.$$

Therefore, we have

$$[E:\mathbb{Q}] = [\mathbb{Q}(\sqrt{D},\alpha_1):\mathbb{Q}] = [\mathbb{Q}(\sqrt{D},\alpha_1):\mathbb{Q}(\sqrt{D})][\mathbb{Q}(\sqrt{D}):\mathbb{Q}] = 3 \cdot 2 = 6,$$

as required.

Problem 15. (Exercise 16.1.8 in the book.) Show that over any field $K \supseteq \mathbb{Q}$ the polynomial $x^3 - 3x + 1$ is either irreducible or splits into linear factors.

Solution. Let $f(x) = x^3 - 3x + 1$. By Theorem 3.7 we have that any root of f is an integer dividing 1. Since f(1) = -1 and f(-1) = 3, we conclude that f has no roots in \mathbb{Q} . Since $\deg(f) = 3$ we conclude that f is irreducible over \mathbb{Q} . Let $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{C}$ be the roots of f and let E be the splitting field of f over \mathbb{Q} . Using Problem 14(a), we compute

$$D = -(4(-3)^3 + 27) = -(4(-27) + 27) = 81,$$

and we have that $\sqrt{D} = \sqrt{81} = 9 \in \mathbb{Q}$. Hence by Problem 14(c) we have that $[E : \mathbb{Q}] = 3$. Moreover, for every $i \in \{1, 2, 3\}$ we have $[\mathbb{Q}(\alpha_i) : \mathbb{Q}] = \deg(f) = 3$ since f is irreducible with α_i as a root. Hence

$$3 = [E : \mathbb{Q}] = [E : \mathbb{Q}(\alpha_i)][\mathbb{Q}(\alpha_i) : \mathbb{Q}] = [E : \mathbb{Q}(\alpha_i)] \cdot 3,$$

and so $\mathbb{Q}(\alpha_i) = E$.

Now assume that f is not irreducible over a field $K \supseteq \mathbb{Q}$ and we show that f splits into linear factors in K. Since f is not irreducible over K and since $\deg(f) = 3$, it follows that K contains a root α_i of f. Hence $E = \mathbb{Q}(\alpha_i) \subseteq K$. Since K contains the splitting field of f, we conclude that f splits into linear factors in K, as required.

Problem 16. (Exercise 16.2.2 in the book.) Is $\mathbb{R} \subseteq \mathbb{R}(\sqrt{-5})$ a normal field extension?

Solution. We have that $\sqrt{-5}$ is the root of $x^2 + 5 \in \mathbb{R}[x]$ and that $x^2 + 5 = (x - \sqrt{-5})(x + \sqrt{-5})$ in $\mathbb{R}[x]$. Hence $\mathbb{R}(\sqrt{-5})$ is the splitting field of $x^2 + 5$ and so $\mathbb{R} \subseteq \mathbb{R}(\sqrt{-5})$ is normal.

Problem 17. (Exercise 16.2.3 in the book.) Let E be a normal extension of F and let K be a subfield of E containing F. Show that E is a normal extension over K. Give an example to show that K need not be a normal extension of F.

Solution. We have field extensions $F \subseteq K \subseteq E$ with $F \subseteq E$ being normal. Therefore, E is the splitting field of a collection of polynomials $\{f_i(x) \in F[x] \mid i \in I\}$. But the polynomials $f_i(x)$ belong to K[x] as well and so E is also the splitting field of $\{f_i(x) \in K[x] \mid i \in I\}$. Hence $K \subseteq E$ is normal.

Now consider the field extensions $\mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$, that is $F = \mathbb{Q}$, $K = \mathbb{R}$ and $E = \mathbb{C}$. The field extensions $\mathbb{Q} \subseteq \mathbb{C}$ and $\mathbb{R} \subseteq \mathbb{C}$ are normal by Theorem 8.5. On the other hand, $\mathbb{Q} \subseteq \mathbb{R}$ is not normal by Example 8.6(2).

Problem 18. (Exercise 16.2.4 in the book.) Let $F = \mathbb{Q}(\sqrt{2})$ and $E = \mathbb{Q}(\sqrt[4]{2})$. Show that E is a normal extension of F, F is a normal extension of \mathbb{Q} , but E is not a normal extension of \mathbb{Q} .

Solution. The field extension $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2})$ is normal, as it is the splitting field of $x^2 - 2 \in \mathbb{Q}[x]$ (the roots of $x^2 - 2$ are $\sqrt{2}, -\sqrt{2} \in \mathbb{Q}(\sqrt{2})$.)

The field extension $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt[4]{2})$ is normal, as it is the splitting field of $x^2 - \sqrt{2} \in \mathbb{Q}(\sqrt{2})[x]$ (the roots of $x^2 - \sqrt{2}$ are $\sqrt[4]{2}, -\sqrt[4]{2} \in \mathbb{Q}(\sqrt[4]{2})$.)

Regarding the field extension $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[4]{2})$, note that the irreducible polynomial $x^4 - 2 \in \mathbb{Q}[x]$ (Eisenstein criterion for p = 2) has two root in $\mathbb{Q}(\sqrt[4]{2})$, namely $\sqrt[4]{2}$ and $-\sqrt[4]{2}$, but it does not have all of its roots in $\mathbb{Q}(\sqrt[4]{2})$ since its other two roots, $i\sqrt[4]{2}$ and $-i\sqrt[4]{2}$ are not real. By Theorem 8.5 we conclude that the extension $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[4]{2})$ is not normal.

Problem 19. (Exercise 16.2.6 in the book.) Let E_i , $i \in \Lambda$ be a family of normal extensions of a field F in some extension K of F. Show that $E := \bigcap_{i \in \Lambda} E_i$ is also a normal extension of F.

Solution. Let $f(x) \in F[x]$ be an irreducible polynomial that has a root $\alpha_1 \in E$. By Theorem 8.5 we need to show that it has all of its roots in E. Since $\alpha_1 \in E = \bigcap_{i \in \Lambda} E_i$, we have that $\alpha_1 \in E_i$ for all $i \in \Lambda$. Hence f(x) has a root in E_i . Since $F \subseteq E_i$ is normal for all $i \in \Lambda$, we have that f(x) has all of its roots in E_i for all $i \in \Lambda$ by Theorem 8.5. Hence for every $i \in \Lambda$, the roots of f, say $\alpha_1, \alpha_2, \ldots, \alpha_n$, belong to E_i . We conclude that $\alpha_1, \alpha_2, \ldots, \alpha_n \in \bigcap_{i \in \Lambda} E_i = E$, as required.

Problem 20. (Exam June 2014, Problem 5.)

- (a) Let $\alpha = \sqrt{2 + \sqrt{2}} \in \mathbb{R}^+$. Find the minimal polynomial of α over \mathbb{Q} .
- (b) Show that $\mathbb{Q}(\alpha)$ is a normal extension of \mathbb{Q} . (Hint: Consider $\alpha\sqrt{2-\sqrt{2}}$.)

Solution.

(a) We have

$$\alpha^{2} = 2 + \sqrt{2} \implies \alpha^{2} - 2 = \sqrt{2}$$

$$\implies (\alpha^{2} - 2)^{2} = (\sqrt{2})^{2}$$

$$\implies \alpha^{4} - 4\alpha^{2} + 4 = 2$$

$$\implies \alpha^{4} - 4\alpha^{2} + 2 = 0.$$

Hence α is a root of $f(x) = x^4 - 4x^2 + 2 \in \mathbb{Q}[x]$. This is irreducible over \mathbb{Q} by Eisenstein criterion for p = 2 and is a monic polynomial. Hence f is the minimal polynomial of α over \mathbb{Q} .

(b) It is enough to show that $\mathbb{Q}(\alpha)$ is the splitting field of $f(x) = x^4 - 4x^2 + 2$ over \mathbb{Q} . To show this we need to show that all the roots of f are in $\mathbb{Q}(\alpha)$. To find the roots of f in \mathbb{C} we have

$$f(x) = x^4 - 4x^2 + 2 = x^4 - 4x^2 + 4 - 2 = (x^2 - 2)^2 - 2 = (x^2 - 2 - \sqrt{2})(x^2 - 2 + \sqrt{2}).$$

Hence the roots of f in \mathbb{C} are

$$\alpha = \sqrt{2+\sqrt{2}}, \quad -\alpha = -\sqrt{2+\sqrt{2}}, \quad \beta \coloneqq \sqrt{2-\sqrt{2}}, \quad -\beta = -\sqrt{2-\sqrt{2}}.$$

Hence it is enough to show that $\beta = \sqrt{2 - \sqrt{2}} \in \mathbb{Q}(\alpha)$. We compute

$$\alpha\beta = \sqrt{2 + \sqrt{2}}\sqrt{2 - \sqrt{2}} = \sqrt{(2 + \sqrt{2})(2 - \sqrt{2})} = \sqrt{4 - (\sqrt{2})^2} = \sqrt{4 - 2} = \sqrt{2}.$$

Hence $\beta = \frac{\alpha}{\sqrt{2}}$ and it is enough to show that $\sqrt{2} \in \mathbb{Q}(\alpha)$. We have $\alpha^2 = 2 + \sqrt{2}$ and so $\sqrt{2} = \alpha^2 - 2 \in \mathbb{Q}(\alpha)$, which completes the proof.