Galois theory - Problem Set 2

To be solved on Friday 10.02

Problem 1. (Exercise 15.3 .2 in the book.) Prove that $\sqrt{2}$ and $\sqrt{3}$ are algebraic over \mathbb{Q}. Find the degree of
(a) $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q}.
(b) $\mathbb{Q}(\sqrt{3})$ over \mathbb{Q}.
(c) $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over \mathbb{Q}.
(d) $\mathbb{Q}(\sqrt{2}+\sqrt{3})$ over \mathbb{Q}.

Problem 2. (Exercise 15.3.4 in the book) Find a suitable number α such that
(a) $\mathbb{Q}(\sqrt{2}, \sqrt{5})=\mathbb{Q}(\alpha)$.
(b) $\mathbb{Q}(\sqrt{3}, i)=\mathbb{Q}(\alpha)$.

Problem 3. (Exam June 2014, Problem 1.)
(a) Write down the irreducible polynomials over \mathbb{Z}_{2} of degrees two and three, respectively.
(b) How many irreducible polynomials of degree four are there over \mathbb{Z}_{2} ?

Problem 4. (Exam June 2014, Problem 3.) Let $f(x) \in \underline{F}[x]$ be a nonzero polynomial over the field F with various properties as described below. Let $\alpha \in \bar{F}$, where \bar{F} denotes the algebraic closure of F.
(a) Let $f(\alpha)=0$. Assume that whenever $g(\alpha)=0$ for some nonzero $g(x) \in F[x]$, then $\operatorname{deg}(f) \leq \operatorname{deg}(g)$. Show that $f(x)$ is irreducible over F.
(b) Show the converse of (a), that is: Assume $f(x)$ is irreducible over F and $f(\alpha)=0$. Let $g(\alpha)=0$ for some nonzero $g(x) \in F[x]$. Show that $\operatorname{deg}(f) \leq \operatorname{deg}(g)$.

Problem 5. (Exam May 2013, Problem 3.)
(a) Let α be an algebraic number over the field F such that $[F(\alpha): F]$ is an odd number. Show that this implies that $F\left(\alpha^{2}\right)=F(\alpha)$.
(b) Give an example to show that the converse implication is not true (Hint: Cyclotomic extensions.)

Problem 6. (Exam June 2015, Problem 3.) Let $F \subseteq E$ be a field extension of degree $[E: F]=n$.
(a) Show that if n is a prime number, then there is no proper intermediate field between E and F (that is, no field K with $F \subseteq K \subseteq E$ and $E \neq K \neq F)$. Deduce that if $\alpha \in E \backslash F$, then the minimal polynomial of α in $F[x]$ has degree n.
(b) Let $E=F(\alpha, \beta)$, where α has minimal polynomial in $F[x]$ of degree d_{1}, and β has minimal polynomial in $F[x]$ of degree d_{2}. Show that if d_{1} and d_{2} are coprime (i.e. $\operatorname{gcd}\left(d_{1}, d_{2}\right)=1$), then $[E: F]=d_{1} d_{2}$.
(c) Give an example where α and β are as in (b), and such that $\alpha \beta$ has minimal polynomial in $F[x]$ of degree d_{1} or d_{2}. (Hint: consider $F=\mathbb{Q}$ with $\alpha=\sqrt[3]{2}$ and β a suitable root of unity.)

Problem 7. (Exercise 15.4.8 in the book.) Let F be a field and let $n \geq 1$. Let $f(x)=x^{n}-\alpha \in F[x]$ be an irreducible polynomial over F and let $b \in K$ be a root of f, where $F \subseteq K$ is a field extension. If m is a positive integer such that $m \mid n$, find the degree of the minimal polynomial of b^{m} over F.

Problem 8. (Exam August 2013, Problem 4.) Let $f(x) \in F[x]$ be an irreducible polynomial of prime degree p over the field F, with $\operatorname{char}(F)=0$ (Warning: I don't think the characteristic of F plays a role.). Let $K=F(\alpha)$, where α is a root of an irreducible polynomial $g(x) \in F[x]$ of prime degree q over the field F. Assume $f(x)$ is reducible in $K[x]$. Show that $p=q$.

Problem 9. (Warning: Needs field of fractions.) (Exercise 15.4.10 in the book.) Give an example of a field E containing a proper subfield K such that E is embeddable in K and $[E: K]$ is finite.
Problem 10. (Exercise 16.1.1 in the book.) Construct splitting fields K over \mathbb{Q} for the polynomial $f(x)$ and find the degree $[K: \mathbb{Q}]$ where $f(x)$ is
(a) $x^{3}-1$.
(b) $x^{4}+1$.
(c) $x^{6}-1$.
(d) $\left(x^{2}-2\right)\left(x^{3}-3\right)$.

Problem 11. (Exam June 2014, Problem 7.) Show that $\sqrt{2}+\sqrt[3]{3} \notin \mathbb{Q}$. (Hint: Consider an appropriate field extension of \mathbb{Q}.)
Problem 12. (Exercise 16.1.2 in the book.) Construct a splitting field for $x^{3}+x+1 \in \mathbb{Z}_{2}[x]$ and list all its elements.

Problem 13. (Exercise 16.1.5 in the book.) Let E be the spliting field of a polynomial of degree n over a field F. Show that $[E: F] \leq n!$.
Problem 14. Let $f(x)=x^{3}+a x+b \in \mathbb{Q}[x]$. Let E be the splitting field of f. Let $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{C}$ be the roots of f (not necessarily distinct).
(a) Define $D=\left(\alpha_{2}-\alpha_{1}\right)^{2}\left(\alpha_{3}-\alpha_{1}\right)^{2}\left(\alpha_{3}-\alpha_{2}\right)^{2}$. Show that $D=-\left(4 a^{3}+27 b^{2}\right)$.
(b) Show that if $f(x)$ is reducible, then $[E: \mathbb{Q}]=1$ or $[E: \mathbb{Q}]=2$.
(c) (Exercise 16.1.3 in the book.) Show that if $f(x)$ is irreducible and $\sqrt{D} \in \mathbb{Q}$, then $[E: \mathbb{Q}]=3$.
(d) (Exercise 16.1.4 in the book.) Show that if $f(x)$ is irreducible and $\sqrt{D} \notin \mathbb{Q}$, then $[E: \mathbb{Q}]=6$.

Problem 15. (Exercise 16.1.8 in the book.) Show that over any field $K \supseteq \mathbb{Q}$ the polynomial $x^{3}-3 x+1$ is either irreducible or splits into linear factors.

Problem 16. (Exercise 16.2.2 in the book.) Is $\mathbb{R} \subseteq \mathbb{R}(\sqrt{-5})$ a normal field extension?
Problem 17. (Exercise 16.2.3 in the book.) Let E be a normal extension of F and let K be a subfield of E containing F. Show that E is a normal extension over K. Give an example to show that K need not be a normal extension of F.

Problem 18. (Exercise 16.2.4 in the book.) Let $F=\mathbb{Q}(\sqrt{2})$ and $E=\mathbb{Q}(\sqrt[4]{2})$. Show that E is a normal extension of F, F is a normal extension of \mathbb{Q}, but E is not a normal extension of \mathbb{Q}.

Problem 19. (Exercise 16.2 .6 in the book.) Let $E_{i}, i \in \Lambda$ be a family of normal extensions of a field F in some extension K of F. Show that $E:=\bigcap_{i \in \Lambda} E_{i}$ is also a normal extension of F.
Problem 20. (Exam June 2014, Problem 5.)
(a) Let $\alpha=\sqrt{2+\sqrt{2}} \in \mathbb{R}^{+}$. Find the minimal polynomial of α over \mathbb{Q}.
(b) Show that $\mathbb{Q}(\alpha)$ is a normal extension of \mathbb{Q}. (Hint: Consider $\alpha \sqrt{2-\sqrt{2}}$.)

