Galois theory - Problem Set 1

To be solved on Monday 23.01

Problem 1. Let R be an integral domain.
(a) Let $a, x, y \in R, a \neq 0$. Show that if $a x=a y$, then $x=y$.
(b) Let $a, b \in R$. Show that if $a \mid b$ and $b \mid a$, then there exists a unit $u \in R$ such that $b=u a$.
(c) Let $a, u \in R$ where u is a unit. Show that a is a unit if and only if $u a$ is a unit.
(d) Let $a, b, u \in R$ where u is a unit. Show that $a \mid b$ if and only if $u a \mid b$.
(e) Let $p \in R$. Show that if p is prime, then p is irreducible.
(f) Let $p, u \in R$ where u is a unit. Show that p is irreducible respectively prime if and only if $p u$ is irreducible respectively prime.
(g) Let $a, p \in R$ with a not a unit and p prime. Show that if $a \mid p$, then there exists a unit $u \in R$ such that $a=u p$.
(h) Let $a, b \in R$. Show that $a \mid b$ if and only if $(b) \subseteq(a)$.

Solution.

(a) Since $a x=a y$ we have $a(x-y)=a x-a y=0$. Since R is an integral domain, we have $a=0$ or $x-y=0$. Since $a \neq 0$, we conclude that $x-y=0$ or $x=y$.
(b) If $b=0$, then since $b \mid a$ we have that $a=0$ and so the claim holds for $u=1$. Assume that $b \neq 0$. Since $a \mid b$, there exists $u \in R$ such that $b=u a$. It remains to show that u is a unit. Since $b \mid a$, there exists $v \in R$ such that $a=v b$. Then $b=u a=u v b$ and so $b 1=b(u v)$. By (a) we conclude that $1=u v$ and so u is a unit.
(c) If a is a unit, then $(u a) a^{-1} u^{-1}=1$ and so $u a$ is a unit too. If $u a$ is a unit, then $a\left(u(u a)^{-1}\right)=1$ and so a is a unit.
(d) We have that $a \mid b$ if and only if there exists $c \in R$ with $b=c a$. Equivalently, we have $b=\left(c u^{-1}\right) u a$, or $u a \mid b$.
(e) Let $p=a b$ for some $a, b \in R$. It is enough to show that a or b is a unit. Since p is prime, we have that $p \mid a$ or $p \mid b$. Without loss of generality, assume that $p \mid a$. Then $a=p c$ for some $c \in R$ and so

$$
p 1=p=a b=(c p) b=p(c b)
$$

gives $p 1=p(c b)$. By (a) we conclude that $1=c b$ and so b is a unit, as required.
(f) Since u is a unit, we have by (c) that p is not a unit if and only if $u p$ is not a unit. Hence we only need to show that the second condition in the definition of irreducible and prime holds for p if and only if it holds for $u p$. Then p being prime is equivalent to $u p$ being prime by (d) and it remains to consider the irreducible case.

Assume that p is irreducible and we show that $u p$ is irreducible. Let $u p=a b$ for some $a, b \in R$ and assume that b is not a unit. It is enough to show that a is a unit. Then $p=u^{-1} a b$ and since b is not a unit and p is irreducible, we conclude that $u^{-1} a$ is a unit. Hence $a=u u^{-1} a$ is a unit.
Assume that $u p$ is irreducible and we show that p is irreducible. Let $p=a b$ for some $a, b \in R$ and assume that b is not a unit. It is enough to show that a is a unit. Then $u p=u(a b)=(u a) b$. Since $u p$ is irreducible, we conclude that $u a$ is a unit. Hence $a=u^{-1} u a$ is a unit.
(g) Since $a \mid p$, there exists $u \in R$ such that $p=u a$. By (e) we have that p is irreducible. Since a is not a unit, we conclude that u is a unit.
(h) We have that $a \mid b$ if and only if $b=c a$ for some $c \in R$. Equivalently, $b \in(a)$ or $(b) \subseteq(a)$.

Problem 2. Let R be an integral domain such that for every $x, y \in R$ we have that $\operatorname{gcd}(x, y)$ exists. Let $a, b, c \in R$.
(a) (Exercise 11.1.1 in the book.) Show that $\operatorname{gcd}(c a, c b)=c \operatorname{gcd}(a, b)$.
(b) (Exercise 11.1.2 in the book.) Show that if $\operatorname{gcd}(a, b)=1$ and if $a \mid c$ and $b \mid c$, then $a b \mid c$.
(c) (Exercise 11.1.3 in the book.) Show that if $\operatorname{gcd}(a, b)=1$ and $b \mid a c$, then $b \mid c$.

Solution.

(a) We have that $\operatorname{gcd}(a, b)=0$ if and only if $a=b=0$ since 0 divides only 0 . Hence the claim is trivially true if $c=0$ or $a=b=0$ and so we may assume that $c \neq 0$ and $\operatorname{gcd}(a, b) \neq 0$.
Let $d=\operatorname{gcd}(a, b)$ and $e=\operatorname{gcd}(c a, c b)$. Since $d \mid a$ and $d \mid b$, there exist $r_{1}, r_{2} \in R$ such that $a=r_{1} d$ and $b=r_{2} d$. Then $c a=r_{1} c d$ and $c b=r_{2} c d$ and so $c d \mid c a$ and $c d \mid c b$. Hence $c d \mid \operatorname{gcd}(c a, c b)=e$ and so there exists $s \in R$ such that $e=s(c d)$. Recall that the greatest common divisor is defined only up to a unit by Remark $1.10(1)$. Hence it is enough to show that s is a unit. Since $e \mid c a$ and $e \mid c b$, there exist $t_{1}, t_{2} \in R$ such that $c a=t_{1} e$ and $c b=t_{2} e$. Using all this we have

$$
(c d) r_{1}=c\left(r_{1} d\right)=c a=t_{1} e=t_{1}(s c d)=(c d)\left(t_{1} s\right)
$$

and so by Problem 1(a) we have that $r_{1}=t_{1} s$. Hence $a=t_{1}(s d)$. Similarly we have that $b=t_{2}(s d)$. Hence $s d \mid a$ and $s d \mid b$, which imply that $s d \mid \operatorname{gcd}(a, b)=d$. Then there exists $u \in R$ with $d=u(s d)=(u s) d$. By Problem 1(a) we conclude that $u s=1$ and so s is a unit as required.
(b) Since $a \mid c$ and $b \mid c$, there exist $r_{1}, r_{2} \in R$ such that $c=r_{1} a$ and $c=r_{2} b$. Then by (a) we have

$$
c=c 1=c \operatorname{gcd}(a, b)=\operatorname{gcd}(c a, c b)=\operatorname{gcd}\left(r_{2} b a, r_{1} a b\right)=a b \operatorname{gcd}\left(r_{2}, r_{1}\right)
$$

and so $a b \mid c$.
(c) Since $b \mid a c$, there exists $r \in R$ such that $a c=r b$. Then by (a) we have

$$
c=c 1=c \operatorname{gcd}(a, b)=\operatorname{gcd}(c a, c b)=\operatorname{gcd}(r b, c b)=b \operatorname{gcd}(r, c),
$$

and so $b \mid c$.
Problem 3. (Exercise 11.1.8 in the book.) Show that in the ring $\mathbb{Z}[\sqrt{-3}]$ the gcd of 4 and $2+2 \sqrt{-3}$ does not exist.

Solution. Let us first compute the common divisors of 4 and $2+2 \sqrt{-3}$. That is assume that $(a+b \sqrt{-3}) \mid 4$ and $(a+b \sqrt{-3}) \mid(2+2 \sqrt{-3})$ for some $a, b \in \mathbb{Z}$. In particular, $(a, b) \neq(0,0)$. Then there exist $x, y, z, w \in \mathbb{Z}$ such that

$$
\begin{aligned}
& (a+b \sqrt{-3})(x+y \sqrt{-3})=4 \\
& (a+b \sqrt{-3})(z+w \sqrt{-3})=2+2 \sqrt{-3}
\end{aligned}
$$

We want to solve for x, y, z, w. Hence we divide both sides by $a+b \sqrt{-3}$ to obtain

$$
\begin{aligned}
& x+y \sqrt{-3}=\frac{4}{a+b \sqrt{-3}} \\
& z+w \sqrt{-3}=\frac{2+2 \sqrt{-3}}{a+b \sqrt{-3}}
\end{aligned}
$$

We now multiply the numerator and denominator of the right hand side by $a-b \sqrt{-3}$ to obtain

$$
\begin{aligned}
& x+y \sqrt{-3}=\frac{4}{a^{2}+3 b^{2}}(a-b \sqrt{-3}) \\
& z+w \sqrt{-3}=\frac{2+2 \sqrt{-3}}{a^{2}+3 b^{2}}(a-b \sqrt{-3})
\end{aligned}
$$

Rearranging, we obtain

$$
\begin{aligned}
& x+y \sqrt{-3}=\frac{4 a}{a^{2}+3 b^{2}}-\frac{4 b}{a^{2}+3 b^{2}} \sqrt{-3} \\
& z+w \sqrt{-3}=\frac{2 a+6 b}{a^{2}+3 b^{2}}+\frac{2 a-2 b}{a^{2}+3 b^{2}} \sqrt{-3}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& x=\frac{4 a}{a^{2}+3 b^{2}} \\
& y=\frac{-4 b}{a^{2}+3 b^{2}} \\
& z=\frac{2 a+6 b}{a^{2}+3 b^{2}} \\
& w=\frac{2 a-2 b}{a^{2}+3 b^{2}}
\end{aligned}
$$

We investigate the cases for a and b so that all of x, y, z, w are integers:

- If $|a|>4$, then x is not an integer.
- If $|b|>2$, then y is not an integer.
- If $|a|=4$ and $|b|=1$, then x is not an integer.
- If $|a|=4$ and $b=0$, then z is not an integer.
- If $|a|=3$ and $|b|=1$, then y is not an integer.
- If $|a|=3$ and $|b|=0$, then x is not an integer.
- If $|a|=2$ and $|b|=1$, then x is not an integer.
- If $a=0$ and $b=0$, then this contradicts $(a, b) \neq(0,0)$.
- If $a=0$ and $|b|=1$, then y is not an integer.

It follows then that

$$
(a, b) \in\{(2,0),(-2,0),(1,1),(1,0),(1,-1),(-1,1),(-1,0),(-1,-1)\}
$$

or that the common divisors of 4 and $2+2 \sqrt{-3}$ are given by the set

$$
C=\{2,-2,1+\sqrt{-3}, 1,1-\sqrt{-3},-1+\sqrt{-3},-1,-1-\sqrt{-3}\}
$$

Hence if $d:=\operatorname{gcd}(4,2+2 \sqrt{-3})$ exists, then $d \in C$. Notice that $2 \nmid 1$ hence $d \neq 1$. Also 2 does not divide any of $1+\sqrt{-3}, 1-\sqrt{-3},-1+\sqrt{-3},-1-\sqrt{-3}$. Indeed, say that $2 \mid(1+\sqrt{-3})$. Then there exist $u, v \in \mathbb{Z}[\sqrt{-3}]$ such that

$$
2(u+v \sqrt{-3})=1+\sqrt{-3}
$$

or $2 u=1$ which is a contradiction, and similarly for the rest. Hence we are left with the only possibility that $d=2$ (the case $d=-2$ is the same since gcd is defined only up to a unit). But we claim that $(1+\sqrt{-3}) \nmid 2$. Indeed, assuming otherwise there exist $k, l \in \mathbb{Z}[\sqrt{-3}]$ such that

$$
\begin{equation*}
(1+\sqrt{-3})(k+l \sqrt{-3})=2 \tag{1}
\end{equation*}
$$

Taking complex norms gives

$$
(1+3)\left(k^{2}+3 l^{2}\right)=4
$$

or $k^{2}+3 l^{2}=1$. Then only solutions are then $k= \pm 1, l=0$. But these are not solutions of (1). Hence $d \neq 2$ and so $\operatorname{gcd}(4,2+2 \sqrt{-3})$ does not exist.

Problem 4. Let $k \in \mathbb{Z}$ and consider the $\operatorname{map} \phi: \mathbb{Z}[\sqrt{k}] \rightarrow \mathbb{Z}$ defined by $\phi(a+b \sqrt{k})=\left|a^{2}-k b^{2}\right|$.
(a) Show that ϕ is multiplicative, that is for all $a, b, c, d \in \mathbb{Z}$ we have $\phi((a+b \sqrt{k})(c+d \sqrt{k}))=\phi(a+$ $b \sqrt{k}) \phi(c+d \sqrt{k})$.
(b) Show that for all $a, b, c, d \in \mathbb{Z}$ we have that if $(a+b \sqrt{k}) \mid(c+d \sqrt{k})$, then $\phi(a+b \sqrt{k}) \mid \phi(c+d \sqrt{k})$.
(c) Show that $a+b \sqrt{k} \in \mathbb{Z}[\sqrt{k}]$ is a unit if and only if $\phi(a+b \sqrt{k})=1$.

Solution.

(a) We compute

$$
\begin{aligned}
\phi((a+b \sqrt{k})(c+d \sqrt{k})) & =\phi((a c+k b d)+(a d+b c) \sqrt{k}) \\
& =\left|(a c+k b d)^{2}-k(a d+b c)^{2}\right| \\
& =\left|a^{2} c^{2}+2 k a b c d+k^{2} b^{2} d^{2}-k a^{2} d^{2}-2 k a b c d-k b^{2} c^{2}\right| \\
& =\left|a^{2} c^{2}-k b^{2} c^{2}+k^{2} b^{2} d^{2}-k a^{2} d^{2}\right| \\
& =\left|c^{2}\left(a^{2}-k b^{2}\right)-k d^{2}\left(a^{2}-k b^{2}\right)\right| \\
& =\left|\left(a^{2}-k b^{2}\right)\left(c^{2}-k d^{2}\right)\right| \\
& =\left|a^{2}-k b^{2}\right|\left|c^{2}-k d^{2}\right| \\
& =\phi(a+b \sqrt{k}) \phi(c+d \sqrt{k}) .
\end{aligned}
$$

(b) By assumption there exist $x, y \in \mathbb{Z}$ such that

$$
(c+d \sqrt{k})=(x+y \sqrt{k})(a+b \sqrt{k}) .
$$

By (a) we obtain

$$
\phi(c+d \sqrt{k})=\phi(x+y \sqrt{k}) \phi(a+b \sqrt{k})
$$

and so $\phi(a+b \sqrt{k}) \mid \phi(c+d \sqrt{k})$.
(c) Assume that $a+b \sqrt{k} \in \mathbb{Z}[\sqrt{k}]$ is a unit. Then $(a+b \sqrt{k}) \mid 1$ and so by (b) we obtain that $\phi(a+b \sqrt{k}) \mid$ $\phi(1)=1$. Hence $\phi(a+b \sqrt{k}) \in\{-1,1\}$. But since $\phi(a+b \sqrt{k})=\left|a^{2}-k b^{2}\right| \geq 0$, we conclude that $\phi(a+b \sqrt{k})=1$.
Assume now that $\phi(a+b \sqrt{k})=1$. Then $\left|a^{2}-k b^{2}\right|=1$. We then have

$$
(a+b \sqrt{k})(a-b \sqrt{k})=a^{2}-k b^{2}= \pm 1
$$

and hence either $a-b \sqrt{k}$ or $-a+b \sqrt{k}$ is an inverse of $a+b \sqrt{k}$.

Problem 5. (Exercise 11.3.4 in the book.) Let $a=3+2 i$ and $b=2-3 i$ be two elements in $\mathbb{Z}[i]$. Find q and r in $\mathbb{Z}[i]$ such that $a=b q+r$ and $\phi(r)<\phi(b)$, where $\phi(x+y i)=x^{2}+y^{2}$.

Solution. We compute

$$
\frac{a}{b}=\frac{3+2 i}{2-3 i}=\frac{(3+2 i)(2+3 i)}{(2-3 i)(2+3 i)}=\frac{13 i}{4+9}=i
$$

Hence $a=b i+0$ and $\phi(0)<\phi(b)$.
Problem 6. (Exercise 11.3 .2 in the book) Show that the ring $\mathbb{Z}[\sqrt{2}]$ is a euclidean domain and a UFD. Explain why in the UFD $\mathbb{Z}[\sqrt{2}]$ we have

$$
(5+\sqrt{2})(2-\sqrt{2})=(11-7 \sqrt{2})(2+\sqrt{2})
$$

even though each of the factors is irreducible.
Solution. We define the function $\phi: \mathbb{Z}[\sqrt{2}] \rightarrow \mathbb{Z}$ given by $\phi(a+b \sqrt{2})=\left|a^{2}-2 b^{2}\right|$ and we show that this gives $\mathbb{Z}[\sqrt{2}]$ the structure of a euclidean domain. By Problem $4(\mathrm{a})$ we have that ϕ is multiplicative and so condition (i) of Definition 2.1 follows. For condition (ii), let $\alpha=a_{1}+a_{2} \sqrt{2}, \beta=b_{1}+b_{2} \sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ with $\beta \neq 0$. Then there exist $x, y \in \mathbb{Q}$ such that

$$
\frac{\alpha}{\beta}=x+y \sqrt{2} .
$$

Let $c_{1} \in \mathbb{Z}$ be the closest integer to x so that $\left|x-c_{1}\right| \leq \frac{1}{2}$. Similarly let $c_{2} \in \mathbb{Z}$ be such that $\left|y-c_{2}\right| \leq \frac{1}{2}$. Set $q:=c_{1}+c_{2} \sqrt{2} \in \mathbb{Z}[\sqrt{2}]$. Then

$$
\begin{aligned}
\alpha & =\beta(x+y \sqrt{2}) \\
& =\beta\left(\left(x-c_{1}\right)+\left(y-c_{2}\right) \sqrt{2}+\left(c_{1}+c_{2} \sqrt{2}\right)\right) \\
& =q \beta+\beta\left(\left(x-c_{1}\right)+\left(y-c_{2}\right) \sqrt{2}\right)
\end{aligned}
$$

Set $r:=\beta\left(\left(x-c_{1}\right)+\left(y-c_{2}\right) \sqrt{2}\right)=\alpha-q \beta \in \mathbb{Z}[\sqrt{2}]$. It remains to show that $\phi(r)<\phi(\beta)$. Clearly we may extend ϕ to a function $\phi: \mathbb{Q}[\sqrt{2}] \rightarrow \mathbb{Z}$, so that again we have

$$
\phi((a+b \sqrt{2})(c+d \sqrt{2}))=\phi(a+b \sqrt{2}) \phi(c+d \sqrt{2})
$$

for all $a, b, c, d \in \mathbb{Q}$. Then we have

$$
\begin{aligned}
\phi(r) & =\phi(\beta) \phi\left(\left(x-c_{1}\right)+\left(y-c_{2}\right) \sqrt{2}\right) \\
& =\phi(\beta)\left|\left(x-c_{1}\right)^{2}-2\left(y-c_{2}\right)^{2}\right| \\
& \leq \phi(\beta)\left(\left(x-c_{1}\right)^{2}+2\left(y-c_{2}\right)^{2}\right) \\
& \leq \phi(\beta)\left(\frac{1}{4}+2 \frac{1}{4}\right) \\
& =\frac{3}{4} \phi(\beta)<\phi(\beta),
\end{aligned}
$$

as required. Hence $\mathbb{Z}[\sqrt{2}]$ is a Euclidean domain and so it is a UFD. Now consider the factorizations

$$
(5+\sqrt{2})(2-\sqrt{2})=(11-7 \sqrt{2})(2+\sqrt{2})
$$

in $\mathbb{Z}[\sqrt{2}]$. Since $\mathbb{Z}[\sqrt{2}]$ is a UFD and these elements are irreducible, it follows that by factoring out some units we obtain the same factorization. By Problem $4(\mathrm{c})$ we have that $u \in \mathbb{Z}[\sqrt{2}]$ is a unit if and only if $\phi(u)=1$. Notice that

$$
\phi(2-\sqrt{2})=\left|2^{2}-2 \cdot 1^{2}\right|=2=\phi(2+\sqrt{2})
$$

And hence we suspect that $2-\sqrt{2}$ and $2+\sqrt{2}$ differ by a unit. Indeed, we have

$$
\frac{2-\sqrt{2}}{2+\sqrt{2}}=\frac{(2-\sqrt{2})^{2}}{2}=\frac{4-4 \sqrt{2}+2}{2}=3-2 \sqrt{2}
$$

and so $2-\sqrt{2}=(2+\sqrt{2})(3-2 \sqrt{2})$. Since $\phi(3-2 \sqrt{2})=9-8=1$, we have that $3-2 \sqrt{2}$ is indeed a unit. Then, we have

$$
(5+\sqrt{2})(2-\sqrt{2})=(5+\sqrt{2})(2+\sqrt{2})(3-2 \sqrt{2})=(5+\sqrt{2})(3-2 \sqrt{2})(2+\sqrt{2})=(11-7 \sqrt{2})(2+\sqrt{2})
$$

and hence no contradiction.
Problem 7. (Exercise 11.3.8 in the book.) Show that $\mathbb{Z}[\sqrt{-6}]$ is not a euclidean domain.
Solution. It is enough to show that $\mathbb{Z}[\sqrt{-6}]$ is not a PID. Notice that $2 \mid-6$ but $-6=\sqrt{-6} \sqrt{-6}$ in $\mathbb{Z}[\sqrt{-6}]$ and $2 \nmid \sqrt{-6}$. Hence 2 is not prime. We claim that 2 is irreducible. Since $\phi(2)=4 \neq 1$, we have that 2 is not a unit by Problem 4(c). Next assume that

$$
2=(a+b \sqrt{-6})(c+d \sqrt{-6})
$$

for some $a, b, c, d \in \mathbb{Z}$ and that $c+d \sqrt{-6}$ is not a unit, and we show that $a+b \sqrt{-6}$ is a unit. By Problem $4(\mathrm{~b})$ we have that $\phi(c+d \sqrt{-6}) \mid \phi(2)=4$. Since $\phi(c+d \sqrt{-6}) \geq 0$, we have that $\phi(c+d \sqrt{-6}) \in\{1,2,4\}$. Since $c+d \sqrt{-6}$ is not a unit, we have that $\phi(c+d \sqrt{-6}) \in\{2,4\}$ by Problem 4(c). Assume to a contradiction that $\phi(c+d \sqrt{-6})=2$. Then

$$
2=\phi(c+d \sqrt{-6})=\left|c^{2}+6 d^{2}\right|=c^{2}+6 d^{2}
$$

and $c^{2}+6 d^{2}=2$ clearly has no solutions $c, d \in \mathbb{Z}$. Hence $\phi(c+d \sqrt{-6})=4$. But then by Problem 4(a) we have $\phi(a+b \sqrt{-6})=1$ and so $a+b \sqrt{-6}$ is a unit by Problem 4(c). Since every irreducible element in a PID is prime, and since 2 is irreducible but not prime, we conclude that $\mathbb{Z}[\sqrt{-6}]$ is not a PID and hence not a Euclidean domain.

Problem 8. (Exercise 15.1.1 in the book.) Show that $f(x)=x^{3}+3 x+2 \in \mathbb{Z}_{7}[x]$ is irreducible over the field \mathbb{Z}_{7}.

Solution. We compute $f(0)=2, f(1)=6, f(2)=2, f(3)=3, f(4)=1, f(5)=2, f(6)=5$ and so f has no root in \mathbb{Z}_{7}. It follows by Lemma $3.4(3)$ that f is irreducible in $\mathbb{Z}_{7}[x]$.

Problem 9. (Exercise 15.1.4 in the book.) Show that $f(x)=x^{3}+a x^{2}+b x+1 \in \mathbb{Z}[x]$ is reducible over \mathbb{Z} if and only if either $a=b$ or $a+b=-2$.

Solution. By Lemma 3.6(3) f is reducible over \mathbb{Z} if and only if f has a root in \mathbb{Z}. Equivalently, there exists $r \in \mathbb{Z}$ such that

$$
r^{3}+a r^{2}+b r+1=0
$$

We may rewrite this as

$$
r\left(r^{2}+a r+b\right)=-1
$$

to obtain that either $r=1$ or $r=-1$. If $r=1$, then we have $1+a+b=-1$ and so $a+b=-2$. If $r=-1$, then we have $-(1-a+b)=-1$ and so $a=b$.

Problem 10. (Exercise 15.1.2 in the book.) Show that $f(x)=x^{4}+8 \in \mathbb{Q}[x]$ is irreducible over \mathbb{Q}.
Solution. By Lemma 3.6 it is enough to show that f is irreducible over \mathbb{Z}. If $f(x)=g(x) h(x)$ with $g(x), h(x) \in \mathbb{Z}[x]$, then g and h are monic polynomials since f is monic and $\operatorname{deg}(g), \operatorname{deg}(h) \in\{1,2,4\}$ since $\operatorname{deg}(g) \operatorname{deg}(h)=\operatorname{deg}(f)=4$. Assume to a contradiction that $\operatorname{deg}(g)=1$. Then $g(x)=x+a \in \mathbb{Z}[x]$ has a
root in \mathbb{Z}, but f has no root in \mathbb{Z}. Hence $\operatorname{deg}(g)>1$. If $\operatorname{deg}(g)=4$, then $\operatorname{deg}(h)=1$ and again we reach a contradiction. Hence $\operatorname{deg}(g)=\operatorname{deg}(h)=2$. Then

$$
\begin{aligned}
& g(x)=x^{2}+a x+b \\
& h(x)=x^{2}+c x+d
\end{aligned}
$$

for some $a, b, c, d \in \mathbb{Z}$. Then

$$
x^{4}+8=\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right)=x^{4}+(c+a) x^{3}+(d+a c+b) x^{2}+(a d+b c) x+b d
$$

implies

$$
\begin{aligned}
c+a & =0 \\
d+a c+b & =0 \\
a d+b c & =0 \\
b d & =8
\end{aligned}
$$

From $a=-c$, we obtain

$$
\begin{aligned}
d+b-c^{2} & =0 \\
-c(d-b) & =0 \\
b d & =8
\end{aligned}
$$

and so either $d-b=0$ or $c=0$ and so $d+b=0$. In any case, $d= \pm b$. But then $b d=8$ gives $\pm b^{2}=8$, which is impossible. Hence such a decomposition does not exist and f is irreducible.

Problem 11. Prove or disprove that $\sqrt[19]{17000}$ is a rational number.
Solution. Let $r=\sqrt[19]{17000}$. Then $r^{19}-17000=0$ and so r is a root of the polynomial $f(x)=x^{19}-17000 \in$ $\mathbb{Z}[x]$. We have $17000=2^{3} \cdot 5^{3} \cdot 17$ and so by applying Eisenstein Criterion on $f(x)$ with $p=17$ we have that $f(x)$ is irreducible over \mathbb{Q}. By Lemma 3.4(2) we conclude that f has no root in \mathbb{Q}. Since r is a root of f, it follows that $r \notin \mathbb{Q}$.

Problem 12. Find the unique factorization of $f(x)=x^{4}+x^{3}-3 x^{2}+3 x+3 \in \mathbb{Z}_{5}[x]$
Solution. We first find a root of $f(x)$. We have

$$
f(x)=x^{4}+x^{3}-3 x^{2}+3 x+3=x^{4}+x^{3}+2 x^{2}+3 x+3
$$

and

$$
f(0)=3, \quad f(1)=0 .
$$

and so 1 is a root of f. Dividing $f(x)$ by $x-1$ we obtain

$$
f(x)=(x-1)\left(x^{3}+2 x^{2}+4 x+2\right)=(x+4) g(x),
$$

where $g(x)=x^{3}+2 x^{2}+4 x+2$ and $x+4$ is irreducible by Lemma 3.4(1). Next we do the same process with $g(x)$. We know that 0 is not a root of g (since it is not a root of f) and so we start checking from 1 .

$$
g(1)=4, \quad g(2)=1, \quad g(3)=4, g(4)=4 .
$$

Hence g has no root in \mathbb{Z}_{5}. Since $\operatorname{deg}(g)=3$, we have by Lemma 3.4(3) that g is irreducible. Hence

$$
f(X)=(x+4)\left(x^{3}+2 x^{2}+4 x+2\right)
$$

is the unique factorization of f in $\mathbb{Z}_{5}[x]$.

Problem 13. (Exercise 15.2 .4 in the book.) Find the smallest extension of \mathbb{Q} having a root of $f(x)=$ $x^{2}+4 \in \mathbb{Q}[x]$.

Solution. The roots of f in \mathbb{C} are $2 i$ and $-2 i$. Hence f has a root in $\mathbb{Q}(i)$. Since $x^{2}+1$ is irreducible, we have

$$
[\mathbb{Q}(i): \mathbb{Q}]=\operatorname{deg}\left(x^{2}+1\right)=2
$$

Since this is the smallest possible degree of a non-trivial field extension, we conclude that $\mathbb{Q} \subseteq \mathbb{Q}(i)$ is the smallest extension of \mathbb{Q} having a root of f.

Problem 14. (Exercise 15.2.1 in the book.) Show that $p(x)=x^{2}-x-1 \in \mathbb{Z}_{3}[x]$ is irreducible over \mathbb{Z}_{3}. Show that there exists an extension K of \mathbb{Z}_{3} with nine elements having all roots of $p(x)$.

Solution. Since $p(0)=2, p(1)=2, p(2)=1$, we conclude that p is irreducible over $\mathbb{Z}_{3}[x]$ by Lemma 3.4(3). Let $K=\mathbb{Z}_{3}[x] /(p(x))$ and $\alpha=\bar{x}=x+(p(x)) \in K$. Then in K we have

$$
p(\alpha)=\bar{x}^{2}-\bar{x}-1=\overline{x^{2}}-\bar{x}-\overline{1}=\overline{x^{2}-x-1}=\overline{p(x)}=0
$$

and so α is a root of p. Since p is irreducible, we have that $K=\mathbb{Z}_{3}(\alpha)$ and

$$
\left[\mathbb{Z}_{3}(\alpha): \mathbb{Z}_{3}\right]=\operatorname{deg}(p)=2
$$

and $1, \alpha$ is a \mathbb{Z}_{3}-basis of $\mathbb{Z}_{3}(\alpha)$. In other words,

$$
\mathbb{Z}_{3}(\alpha)=\left\{a+b \alpha \mid a, b \in \mathbb{Z}_{3}\right\}=\{0,1,2, \alpha, 1+\alpha, 2+\alpha, 2 \alpha, 1+2 \alpha, 2+2 \alpha\}
$$

and $\mathbb{Z}_{3}(\alpha)$ has 9 elements. Multiplication in $\mathbb{Z}_{3}(\alpha)$ is done via $\alpha^{2}-\alpha-1=0$. To find the other root of p we have

$$
x^{2}-x-1=p(x)=(x-\alpha)(x-\beta)=x^{2}+(\beta-\alpha) x+\alpha \beta
$$

for some $\beta \in \mathbb{Z}_{3}(\alpha)$. We obtain that $\alpha \beta=-1$ and so $\beta=-\alpha^{-1}$. From $\alpha^{2}-\alpha-1=0$ we have $\alpha(\alpha-1)=1$ and so $\beta=-\alpha^{-1}=-(\alpha-1)=1+2 \alpha$ is the other root of p.

Problem 15. (Exercise 15.2 .2 in the book.) Show that $f(x)=x^{3}-2 \in \mathbb{Q}[x]$ is irreducible over \mathbb{Q}. Find (if it exists) an extension K of \mathbb{Q} having all roots of $x^{3}-2$ such that $[K: \mathbb{Q}]=6$.

Solution. The polynomial f is irreducible over \mathbb{Q} by Eisenstein criterion for $p=2$. The roots of f in \mathbb{C} are

$$
r_{1}=2^{1 / 3} e^{2 \pi i / 3}, \quad r_{2}=2^{1 / 3} e^{4 \pi i / 3}, \quad r_{3}=2^{1 / 3} e^{6 \pi i / 3}=2^{1 / 3}
$$

Let $\omega_{k}=e^{2 \pi i k / 3}$ for $k=1,2,3$. Then $r_{k}=2^{1 / 3} \omega_{k}$. Then f has all its roots in $K=\mathbb{Q}\left(2^{1 / 3}, \omega_{1}\right)$. It remains to show that $\left[\mathbb{Q}\left(2^{1 / 3}, \omega_{1}\right): \mathbb{Q}\right]=6$. Since $2^{1 / 3}$ is a root of f, and since f is irreducible, we have that

$$
\left[\mathbb{Q}\left(2^{1 / 3}\right): \mathbb{Q}\right]=\operatorname{deg}(f)=3
$$

On the other hand, we have that $\omega_{1} \notin \mathbb{Q}\left(2^{1 / 3}\right)$ since $\omega_{1} \notin \mathbb{R}$. Notice that ω_{1} is a root of $x^{3}-1$ and

$$
x^{3}-1=(x-1)\left(x^{2}+x+1\right)
$$

Since ω_{1} is not a root of $x-1$, we have that ω_{1} is a root of $x^{2}+x+1$. Moreover, since ω_{1} is not real, the other root of $x^{2}+x+1$ is also not real and so $x^{2}+x+1$ is irreducible over $\mathbb{Q}\left(2^{1 / 3}\right)$. Therefore

$$
\left[\mathbb{Q}\left(2^{1 / 3}, \omega_{1}\right): \mathbb{Q}\left(2^{1 / 3}\right)\right]=\operatorname{deg}\left(x^{2}+x+1\right)=2
$$

Since $\mathbb{Q} \subseteq \mathbb{Q}\left(2^{1 / 3}\right) \subseteq \mathbb{Q}\left(2^{1 / 3}, \omega_{1}\right)=K$, we conclude that

$$
[K: \mathbb{Q}]=\left[\mathbb{Q}\left(2^{1 / 3}, \omega_{1}\right): \mathbb{Q}\right]=\left[\mathbb{Q}\left(2^{1 / 3}, \omega_{1}\right): \mathbb{Q}\left(2^{1 / 3}\right)\right] \cdot\left[\mathbb{Q}\left(2^{1 / 3}\right): \mathbb{Q}\right]=2 \cdot 3=6,
$$

as required.

