Galois theory - Problem Set 1

To be solved on Monday 23.01

Problem 1. Let R be an integral domain.

Let a,z,y € R, a # 0. Show that if ax = ay, then x = y.

Let a,b € R. Show that if a ’ b and b | a, then there exists a unit w € R such that b = ua.
Let a,u € R where u is a unit. Show that a is a unit if and only if ua is a unit.

Let a,b,u € R where u is a unit. Show that a ’ b if and only if ua ’ b.

Let p € R. Show that if p is prime, then p is irreducible.

Let p,u € R where u is a unit. Show that p is irreducible respectively prime if and only if pu is
irreducible respectively prime.

Let a,p € R with a not a unit and p prime. Show that if a ] p, then there exists a unit © € R such
that a = up.

Let a,b € R. Show that a | b if and only if (b) C (a).

Solution.

(a)

(b)

Since ax = ay we have a(x — y) = ax —ay = 0. Since R is an integral domain, we have a = 0 or
x —y = 0. Since a # 0, we conclude that t —y =0or z = y.

If b = 0, then since b | a we have that a = 0 and so the claim holds for v = 1. Assume that b # 0.
Since a | b, there exists u € R such that b = ua. It remains to show that u is a unit. Since b | a, there
exists v € R such that a = vb. Then b = ua = uwb and so bl = b(uv). By (a) we conclude that 1 = uv
and so v is a unit.
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If a is a unit, then (ua)a™'u~! = 1 and so ua is a unit too. If ua is a unit, then a(u(ua)~!) = 1 and

SO a is a unit.

We have that a | b if and only if there exists ¢ € R with b = ca. Equivalently, we have b = (cu™!)ua,
or ua | b.

Let p = ab for some a,b € R. It is enough to show that a or b is a unit. Since p is prime, we have that
P ‘ aorp | b. Without loss of generality, assume that p ‘ a. Then a = pc for some ¢ € R and so

pl=p=ab= (cp)b = p(ch)
gives pl = p(cb). By (a) we conclude that 1 = ¢b and so b is a unit, as required.

Since u is a unit, we have by (c¢) that p is not a unit if and only if up is not a unit. Hence we only need
to show that the second condition in the definition of irreducible and prime holds for p if and only if
it holds for up. Then p being prime is equivalent to up being prime by (d) and it remains to consider
the irreducible case.



(2)

(h)

Assume that p is irreducible and we show that up is irreducible. Let up = ab for some a,b € R and
assume that b is not a unit. It is enough to show that a is a unit. Then p = v~ 'ab and since b is not
a unit and p is irreducible, we conclude that u~'a is a unit. Hence a = uu~'a is a unit.

Assume that up is irreducible and we show that p is irreducible. Let p = ab for some a,b € R and
assume that b is not a unit. It is enough to show that a is a unit. Then up = u(ab) = (ua)b. Since up
is irreducible, we conclude that ua is a unit. Hence ¢ = v~ 'ua is a unit.

Since a ’ p, there exists u € R such that p = ua. By (e) we have that p is irreducible. Since a is not a
unit, we conclude that u is a unit.

We have that a | b if and only if b = ca for some ¢ € R. Equivalently, b € (a) or (b) C (a).

Problem 2. Let R be an integral domain such that for every z,y € R we have that ged(x,y) exists. Let
a,b,c € R.

(a)
(b)
()

(Exercise 11.1.1 in the book.) Show that gcd(ca, c¢b) = cged(a, b).
(Exercise 11.1.2 in the book.) Show that if ged(a,b) =1 and if a ’ cand b | ¢, then ab | c.

(Exercise 11.1.3 in the book.) Show that if gcd(a,b) = 1 and b ‘ ac, then b | c.

Solution.

(a)

()

We have that ged(a,b) = 0 if and only if a = b = 0 since 0 divides only 0. Hence the claim is trivially
true if c =0 or a = b =0 and so we may assume that ¢ # 0 and ged(a, b) # 0.

Let d = ged(a,b) and e = ged(ca, cb). Since d | a and d | b, there exist 71,72 € R such that a = rid
and b = rod. Then ca = ried and ¢b = ryed and so cd | ca and cd | cb. Hence cd | ged(ca, cb) = e and
so there exists s € R such that e = s(cd). Recall that the greatest common divisor is defined only up
to a unit by Remark 1.10(1). Hence it is enough to show that s is a unit. Since e | ca and e ’ cb, there
exist t1,to € R such that ca = tie and cb = tye. Using all this we have

(cd)r1 = c¢(r1d) = ca = t1e = t1(scd) = (ed)(t1s)

and so by Problem 1(a) we have that r1 = t1s. Hence a = t1(sd). Similarly we have that b = t3(sd).
Hence sd | a and sd | b, which imply that sd } ged(a,b) = d. Then there exists u € R with
d = u(sd) = (us)d. By Problem 1(a) we conclude that us = 1 and so s is a unit as required.

Since a ’ cand b ’ ¢, there exist r1,79 € R such that ¢ = r1a and ¢ = r9b. Then by (a) we have
¢ =cl = cged(a,b) = ged(ca, cb) = ged(raba, riab) = abged(ra, 1),
and so ab | c.
Since b | ac, there exists r € R such that ac = rb. Then by (a) we have
¢ =cl = cged(a, b) = ged(ea, eb) = ged(rb, eb) = bged(r, ¢),

and so b ’ c.

Problem 3. (Exercise 11.1.8 in the book.) Show that in the ring Z[v/—3] the ged of 4 and 2 + 2/—3 does

not exist.

Solution. Let us first compute the common divisors of 4 and 2+ 2+v/—3. That is assume that (a+by/—3) | 4
and (a + bv/=3) | (2 + 2v/=3) for some a,b € Z. In particular, (a,b) # (0,0). Then there exist z,y,z,w € Z
such that

(a +bvV=3)(x +yv—3) = 4,
(a+bV=3)(z +wv-3) =2+2V-3.



We want to solve for z,y, z, w. Hence we divide both sides by a + by/—3 to obtain

4
+yv—3=—r,
vy a+byv-3
2+2y=-3
z+wy—-3=——.
a+by—3
We now multiply the numerator and denominator of the right hand side by a — b/—3 to obtain
4
r+yv-3= pEEETS (a — bv=3),
2+2v/-3
V—3=——(a—bv/-3).
Fhw a? + 3b? (a 3)
Rearranging, we obtain
4 4b
r+yv—-3= ¢

a2 +3b2 a2+3p2°

2a + 6b 2a — 2b
st w3 = a—+ n a

w

a2 +3b2 " a2 +3p2°

It follows that

We investigate the cases for a and b so that all of x,y, z, w are integers:

_ 4a
x_a2—|—3b2’
"
YT @t
_ 2a+6b
Zﬁa2+3b2’
_ 2a—2b
T

If |a| > 4, then x is not an integer.

If |b| > 2, then y is not an integer.

If |a] =4 and |b| = 1, then « is not an integer.

If |a| =4 and b = 0, then z is not an integer.

If |a| = 3 and |b| = 1, then y is not an integer.

If |a| = 3 and |b] = 0, then z is not an integer.

If |a] = 2 and |b| = 1, then « is not an integer.

If a = 0 and b = 0, then this contradicts (a, b) # (0, 0).

If a = 0 and |b| = 1, then y is not an integer.

It follows then that

(a’ b) € {(270)’ (_270)’ (L 1)? (1’ 0)7 (17 _1)7 (_1’ 1)) (_1’ 0)5 (_L _1)}a

or that the common divisors of 4 and 2 + 24/—3 are given by the set

02{27_271+ V_37171_\/_73,_1+\/_3,_17_1—\/—3}.



Hence if d := ged(4, 2 + 24/—3) exists, then d € C. Notice that 21 1 hence d # 1. Also 2 does not divide any
of 1++/-3,1—+/=3,-1++v—3,—1—+/—3. Indeed, say that 2 ‘ (1++/=3). Then there exist u,v € Z[y/—3]
such that

2u+vvV=3)=1+v-3

or 2u = 1 which is a contradiction, and similarly for the rest. Hence we are left with the only possibility that
d = 2 (the case d = —2 is the same since ged is defined only up to a unit). But we claim that (14 +/—3) 1 2.
Indeed, assuming otherwise there exist k,l € Z[v/—3] such that

(1+V=3)(k +1V/=3) = 2. (1)

Taking complex norms gives

(1+3)(k*+31%) =4

or k% 4+ 31? = 1. Then only solutions are then k = 41,/ = 0. But these are not solutions of (1). Hence d # 2
and so ged(4,2 4+ 24/—3) does not exist.

Problem 4. Let k € Z and consider the map ¢ : Z[Vk] — Z defined by é(a + bvVk) = |a? — kb?|.

(a) Show that ¢ is multiplicative, that is for all a,b,c,d € Z we have ¢((a + bVk)(c + dVE)) = ¢(a +
Wk)p(c+ dVE).

(b) Show that for all a,b,c,d € Z we have that if (a + bv/k) | (c + dVk), then ¢(a + bVE) | ¢(c + dVk).
(¢) Show that a + bvk € Z[VE] is a unit if and only if ¢(a + bvEk) = 1.
Solution.

(a) We compute

o((a + bVE)(c + dVE)) = ¢((ac + kbd) + (ad + be)VE)
= |(ac + kbd)? — k(ad + bc)?|
= |a®c® 4 2kabed + E*V?d? — ka?d? — 2kabed — kb2
= [a®c® — kb*c® + k*b*d® — ka?d?|
= |c*(a® — kb?) — kd?(a® — kb?)|
= |(a® — kb*)(c* — kd®)|
= |a® — kb?||c* — kd?|
= ¢(a+ bVE)o(c + dVk).

(b) By assumption there exist x,y € Z such that

(c+ dVk) = (x + yVk)(a + bVE).

By (a) we obtain
d(c+ dvVk) = ¢z + yVk)p(a + bVk)
and so ¢(a + bV'k) | p(c+ dVk).
(¢) Assume that a4+ bvk € Z[VE] is a unit. Then (a + bvk) | 1 and so by (b) we obtain that ¢(a+ b'k) |

¢(1) = 1. Hence ¢(a + bvVEk) € {—1,1}. But since ¢(a + bvk) = |a® — kb?| > 0, we conclude that
d(a+bVk) = 1.

Assume now that ¢(a + bv/k) = 1. Then |a? — kb?| = 1. We then have
(a+0VE)(a — bVE) = a® — kb* = 41

and hence either a — bv'k or —a + bvk is an inverse of a + bv/'k.



Problem 5. (Exercise 11.3.4 in the book.) Let a = 3 + 2i and b = 2 — 3i be two elements in Z[i]. Find ¢
and r in Z[i] such that a = bq + 7 and ¢(r) < ¢(b), where ¢p(z + yi) = 22 + y>.

Solution. We compute
a _3+2 (3+2i)(2+ 3i) 134

1.

b 2-3i (2-30)(2+3i) 4+9
Hence a = bi 4+ 0 and ¢(0) < ¢(b).

Problem 6. (Exercise 11.3.2 in the book) Show that the ring Z[+/2] is a euclidean domain and a UFD.
Explain why in the UFD Z[v/2] we have

(B+V2)(2-V2)=(11-7V2)2+V?2)
even though each of the factors is irreducible.

Solution. We define the function ¢ : Z[v/2] — Z given by é(a + bv/2) = |a® — 2b?| and we show that this
gives Z[v/2] the structure of a euclidean domain. By Problem 4(a) we have that ¢ is multiplicative and so
condition (i) of Definition 2.1 follows. For condition (i), let a = a1 + a2v/2, 8 = by + bav/2 € Z[/2] with
B # 0. Then there exist x,y € Q such that

«

E:x+yﬁ.

Let ¢; € Z be the closest integer to « so that |x — ¢1| < % Similarly let ¢o € Z be such that |y — o] <
Set ¢ :=c1 +coV2 € Z[\/i] Then

1
5

a=fe+yv2)
=B((x—c1) + (Y — c2)V2 + (c1 + 2V2))
=qB+B((x —c1) + (y — c2)V2).

Set r == B((x — c1) + (y — 2)V2) = a — ¢B € Z[V/2]. It remains to show that ¢(r) < #(3). Clearly we may
extend ¢ to a function ¢ : Q[v/2] — Z, so that again we have

o((a +bvV2)(c+dv2)) = ¢(a+bV2)¢(c + dV2)

for all a,b,c,d € Q. Then we have

8(r) = B(B)((x — 1) + (y = e2)V?)
= 6(B)|(x — @1)* — 20y — o)
< 6(B) (& — 1)* + 20y — 2)?)
< 0(8)(5 +27)
= 26(6) < 9(9)

as required. Hence Z[v/2] is a Euclidean domain and so it is a UFD. Now consider the factorizations
(5+vV2)(2-V2) = (11 -7V2)(2+V2).

in Z[v/2]. Since Z[v/2] is a UFD and these elements are irreducible, it follows that by factoring out some
units we obtain the same factorization. By Problem 4(c) we have that u € Z[v/2] is a unit if and only if
¢(u) = 1. Notice that

p2—-V2)=22-2-12|=2=9(2+V2)



And hence we suspect that 2 — V2 and 2 + /2 differ by a unit. Indeed, we have

242 2

and 50 2 — /2 = (2 4+ v/2)(3 — 2v/2). Since #(3 — 2v/2) =9 — 8 = 1, we have that 3 — 2v/2 is indeed a unit.
Then, we have

(5+vV2)(2-V2) = (+V2)(2+V2)(3-2v2) = (5+V2)(3-2V2)(2+V2) = (11 - TV2)(2 + V2),

2 -2 (Zfﬂ)2:4f4\2@+2:3_2\/§

and hence no contradiction.
Problem 7. (Exercise 11.3.8 in the book.) Show that Z[\/—6] is not a euclidean domain.

Solution. It is enough to show that Z[/—6] is not a PID. Notice that 2 | —6 but —6 = /—6+/—6 in Z[v/—6]
and 2 { v/—6. Hence 2 is not prime. We claim that 2 is irreducible. Since ¢(2) = 4 # 1, we have that 2 is
not a unit by Problem 4(c). Next assume that

2 = (a +bv—6)(c + dv—6)

for some a,b,c,d € Z and that ¢ + dv/—6 is not a unit, and we show that a 4+ by/—6 is a unit. By Problem
4(b) we have that ¢(c + dv/—6) | ¢(2) = 4. Since ¢(c + dy/—6) > 0, we have that ¢(c + dv/—6) € {1,2,4}.
Since ¢+ dy/—6 is not a unit, we have that ¢(c+dv/—6) € {2,4} by Problem 4(c). Assume to a contradiction
that ¢(c + dy/—6) = 2. Then

2 = ¢(c+dv—6) = |c® + 6d*| = ¢* + 64,

and ¢? + 6d% = 2 clearly has no solutions c,d € Z. Hence ¢(c + dy/—6) = 4. But then by Problem 4(a) we
have ¢(a + by/—6) = 1 and so a + by/—6 is a unit by Problem 4(c). Since every irreducible element in a PID
is prime, and since 2 is irreducible but not prime, we conclude that Z[/—6] is not a PID and hence not a
Euclidean domain.

Problem 8. (Exercise 15.1.1 in the book.) Show that f(x) = 23 + 3z + 2 € Z;[z] is irreducible over the
field Z.

Solution. We compute f(0) =2, f(1) =6, f(2) =2, f(3) =3, f(4) =1, f(5) =2, f(6) =5 and so f has
no root in Z7. It follows by Lemma 3.4(3) that f is irreducible in Z7[z].

Problem 9. (Exercise 15.1.4 in the book.) Show that f(z) = 2® + az? + bz + 1 € Z[z] is reducible over Z
if and only if either a = b or a + b= —2.

Solution. By Lemma 3.6(3) f is reducible over Z if and only if f has a root in Z. Equivalently, there exists
r € Z such that
P 4ar+br+1=0.

We may rewrite this as
r(r? +ar+b) = -1

to obtain that either r =1 or r = —1. If r =1, then we have 1 +a+b=—-1andsoa+b= —-2. If r = —1,
then we have —(1 —a+b) = —1 and so a = b.
Problem 10. (Exercise 15.1.2 in the book.) Show that f(z) = x* + 8 € Q[x] is irreducible over Q.

Solution. By Lemma 3.6 it is enough to show that f is irreducible over Z. If f(z) = g(x)h(x) with
g(x), h(x) € Z|z], then g and h are monic polynomials since f is monic and deg(g),deg(h) € {1,2,4} since
deg(g) deg(h) = deg(f) = 4. Assume to a contradiction that deg(g) = 1. Then g(z) = x + a € Z[z] has a



root in Z, but f has no root in Z. Hence deg(g) > 1. If deg(g) = 4, then deg(h) = 1 and again we reach a
contradiction. Hence deg(g) = deg(h) = 2. Then

g(x) =2* +ax+0
h(z) =2® 4+ cx+d

for some a,b,c,d € Z. Then

2 + 8= (2% 4+ ax +b) (2 + cx + d) = 2* + (c + a)z® + (d + ac + b)2® + (ad + be)x + bd

implies

c+a=0
d+ac+b=0
ad+bc=0
bd =8

From a = —c¢, we obtain
d+b—c*=0
—c(d—=b)=0
bd =8

and so either d —b =0 or ¢ = 0 and so d + b = 0. In any case, d = £b. But then bd = 8 gives +b* = 8,
which is impossible. Hence such a decomposition does not exist and f is irreducible.

Problem 11. Prove or disprove that %/17000 is a rational number.

Solution. Let r = %/17000. Then 7' —17000 = 0 and so r is a root of the polynomial f(z) = 2 —17000 €
Z]x]. We have 17000 = 23 -53 .17 and so by applying Eisenstein Criterion on f(z) with p = 17 we have that
f(z) is irreducible over Q. By Lemma 3.4(2) we conclude that f has no root in Q. Since r is a root of f, it
follows that r & Q.

Problem 12. Find the unique factorization of f(z) = 2* + 23 — 322 4 3z + 3 € Zs[z]
Solution. We first find a root of f(x). We have
fl@)=a*+2%-322 + 320 +3 =0+ 23 + 22 + 32+ 3

and
f(0)=3, f(1)=0.
and so 1 is a root of f. Dividing f(z) by z — 1 we obtain
f(@) = (z = 1)(2° + 20" + 42+ 2) = (z + 4)g(2),

where g(z) = 2 + 222 4+ 42 + 2 and z + 4 is irreducible by Lemma 3.4(1). Next we do the same process with
g(x). We know that 0 is not a root of g (since it is not a root of f) and so we start checking from 1.

g(1) =4, g(2)=1, g(3) =4,94) =4.
Hence g has no root in Zs. Since deg(g) = 3, we have by Lemma 3.4(3) that g is irreducible. Hence
f(X) = (x+4)(2® + 222 + 42 + 2),

is the unique factorization of f in Zs[z].



Problem 13. (Exercise 15.2.4 in the book.) Find the smallest extension of Q having a root of f(x) =
z? 4+ 4 € Q[z].

Solution. The roots of f in C are 2i and —2i. Hence f has a root in Q(i). Since 22 + 1 is irreducible, we
have

[Q(i) : Q] = deg(x* + 1) = 2.

Since this is the smallest possible degree of a non-trivial field extension, we conclude that Q C Q(4) is the
smallest extension of Q having a root of f.

Problem 14. (Exercise 15.2.1 in the book.) Show that p(z) = 2* — 2 — 1 € Zs[z] is irreducible over Zs.
Show that there exists an extension K of Zs with nine elements having all roots of p(x).

Solution. Since p(0) , p(1) =2, p(2) = 1, we conclude that p is irreducible over Zs[x] by Lemma 3.4(3).
« =+

=2
Let K = Zs[z]/(p(z)) and a =7 (p(x)) € K. Then in K we have

pla)=7"-T—-1=a2-T-1=22-z—-1=p(x)=0

and so « is a root of p. Since p is irreducible, we have that K = Z3(«) and
[Z3(c) : Zs] = deg(p) =2
and 1, « is a Zg-basis of Zz(«). In other words,
Zs(a) ={a+bal|a,beZs} ={0,1,2,a,1 + a,2 + o, 20,1 + 20,2 + 20}

and Zz(a) has 9 elements. Multiplication in Z3(«) is done via a? — o — 1 = 0. To find the other root of p
we have
2=z —1=p(x) = (2 — )@ — ) = 2 + (B — a)o +

for some 3 € Z3(a). We obtain that a3 = —1 and so f = —a~!. From a? —a —1 =0 we have a(a — 1) = 1
and so B = —a~! = —(a — 1) = 1 + 2« is the other root of p.

Problem 15. (Exercise 15.2.2 in the book.) Show that f(z) = 2® —2 € Q[z] is irreducible over Q. Find (if
it exists) an extension K of Q having all roots of 2% — 2 such that [K : Q] = 6.

Solution. The polynomial f is irreducible over Q by Eisenstein criterion for p = 2. The roots of f in C are

r = 21/3€2m'/3’ Py = 21/3€4m'/3’ rg = 91/3,6mi/3 _ 91/3

Let wy = e>™/3 for k = 1,2,3. Then r, = 2'/3w,. Then f has all its roots in K = Q(2'/3,w;). It remains
to show that [Q(2'/3,w;) : Q] = 6. Since 2'/3 is a root of f, and since f is irreducible, we have that

[@(2'%) : Q] = deg(f) = 3.
On the other hand, we have that w; ¢ Q(2/3) since w; ¢ R. Notice that w; is a root of 3 — 1 and
1= (x—1)(2* +2+1).

Since wy is not a root of z — 1, we have that w; is a root of 22 + = + 1. Moreover, since w; is not real, the
other root of 2% 4+ + 1 is also not real and so 22 4 z + 1 is irreducible over Q(2!/3). Therefore

[Q(2Y3,wy) : Q(2Y/3)] = deg(a® + 2 +1) = 2.
Since Q C Q(2'/?%) € Q(2/3,w;) = K, we conclude that
(K :Q] = [Q(2"%w1) : Q) = [Q(2"/%,w1) : Q(2'°)] - [Q(2"/%) : Q] = 2-3 =6,

as required.



