
Galois theory - Problem Set 1

To be solved on Monday 23.01

Problem 1. Let R be an integral domain.

(a) Let a, x, y ∈ R, a ̸= 0. Show that if ax = ay, then x = y.

(b) Let a, b ∈ R. Show that if a
∣∣ b and b

∣∣ a, then there exists a unit u ∈ R such that b = ua.

(c) Let a, u ∈ R where u is a unit. Show that a is a unit if and only if ua is a unit.

(d) Let a, b, u ∈ R where u is a unit. Show that a
∣∣ b if and only if ua

∣∣ b.
(e) Let p ∈ R. Show that if p is prime, then p is irreducible.

(f) Let p, u ∈ R where u is a unit. Show that p is irreducible respectively prime if and only if pu is
irreducible respectively prime.

(g) Let a, p ∈ R with a not a unit and p prime. Show that if a
∣∣ p, then there exists a unit u ∈ R such

that a = up.

(h) Let a, b ∈ R. Show that a
∣∣ b if and only if (b) ⊆ (a).

Solution.

(a) Since ax = ay we have a(x − y) = ax − ay = 0. Since R is an integral domain, we have a = 0 or
x− y = 0. Since a ̸= 0, we conclude that x− y = 0 or x = y.

(b) If b = 0, then since b
∣∣ a we have that a = 0 and so the claim holds for u = 1. Assume that b ̸= 0.

Since a
∣∣ b, there exists u ∈ R such that b = ua. It remains to show that u is a unit. Since b

∣∣ a, there
exists v ∈ R such that a = vb. Then b = ua = uvb and so b1 = b(uv). By (a) we conclude that 1 = uv
and so u is a unit.

(c) If a is a unit, then (ua)a−1u−1 = 1 and so ua is a unit too. If ua is a unit, then a(u(ua)−1) = 1 and
so a is a unit.

(d) We have that a
∣∣ b if and only if there exists c ∈ R with b = ca. Equivalently, we have b = (cu−1)ua,

or ua
∣∣ b.

(e) Let p = ab for some a, b ∈ R. It is enough to show that a or b is a unit. Since p is prime, we have that
p
∣∣ a or p

∣∣ b. Without loss of generality, assume that p
∣∣ a. Then a = pc for some c ∈ R and so

p1 = p = ab = (cp)b = p(cb)

gives p1 = p(cb). By (a) we conclude that 1 = cb and so b is a unit, as required.

(f) Since u is a unit, we have by (c) that p is not a unit if and only if up is not a unit. Hence we only need
to show that the second condition in the definition of irreducible and prime holds for p if and only if
it holds for up. Then p being prime is equivalent to up being prime by (d) and it remains to consider
the irreducible case.
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Assume that p is irreducible and we show that up is irreducible. Let up = ab for some a, b ∈ R and
assume that b is not a unit. It is enough to show that a is a unit. Then p = u−1ab and since b is not
a unit and p is irreducible, we conclude that u−1a is a unit. Hence a = uu−1a is a unit.

Assume that up is irreducible and we show that p is irreducible. Let p = ab for some a, b ∈ R and
assume that b is not a unit. It is enough to show that a is a unit. Then up = u(ab) = (ua)b. Since up
is irreducible, we conclude that ua is a unit. Hence a = u−1ua is a unit.

(g) Since a
∣∣ p, there exists u ∈ R such that p = ua. By (e) we have that p is irreducible. Since a is not a

unit, we conclude that u is a unit.

(h) We have that a
∣∣ b if and only if b = ca for some c ∈ R. Equivalently, b ∈ (a) or (b) ⊆ (a).

Problem 2. Let R be an integral domain such that for every x, y ∈ R we have that gcd(x, y) exists. Let
a, b, c ∈ R.

(a) (Exercise 11.1.1 in the book.) Show that gcd(ca, cb) = c gcd(a, b).

(b) (Exercise 11.1.2 in the book.) Show that if gcd(a, b) = 1 and if a
∣∣ c and b

∣∣ c, then ab
∣∣ c.

(c) (Exercise 11.1.3 in the book.) Show that if gcd(a, b) = 1 and b
∣∣ ac, then b

∣∣ c.
Solution.

(a) We have that gcd(a, b) = 0 if and only if a = b = 0 since 0 divides only 0. Hence the claim is trivially
true if c = 0 or a = b = 0 and so we may assume that c ̸= 0 and gcd(a, b) ̸= 0.

Let d = gcd(a, b) and e = gcd(ca, cb). Since d
∣∣ a and d

∣∣ b, there exist r1, r2 ∈ R such that a = r1d

and b = r2d. Then ca = r1cd and cb = r2cd and so cd
∣∣ ca and cd

∣∣ cb. Hence cd
∣∣ gcd(ca, cb) = e and

so there exists s ∈ R such that e = s(cd). Recall that the greatest common divisor is defined only up
to a unit by Remark 1.10(1). Hence it is enough to show that s is a unit. Since e

∣∣ ca and e
∣∣ cb, there

exist t1, t2 ∈ R such that ca = t1e and cb = t2e. Using all this we have

(cd)r1 = c(r1d) = ca = t1e = t1(scd) = (cd)(t1s)

and so by Problem 1(a) we have that r1 = t1s. Hence a = t1(sd). Similarly we have that b = t2(sd).
Hence sd

∣∣ a and sd
∣∣ b, which imply that sd

∣∣ gcd(a, b) = d. Then there exists u ∈ R with
d = u(sd) = (us)d. By Problem 1(a) we conclude that us = 1 and so s is a unit as required.

(b) Since a
∣∣ c and b

∣∣ c, there exist r1, r2 ∈ R such that c = r1a and c = r2b. Then by (a) we have

c = c1 = c gcd(a, b) = gcd(ca, cb) = gcd(r2ba, r1ab) = ab gcd(r2, r1),

and so ab
∣∣ c.

(c) Since b
∣∣ ac, there exists r ∈ R such that ac = rb. Then by (a) we have

c = c1 = c gcd(a, b) = gcd(ca, cb) = gcd(rb, cb) = b gcd(r, c),

and so b
∣∣ c.

Problem 3. (Exercise 11.1.8 in the book.) Show that in the ring Z[
√
−3] the gcd of 4 and 2 + 2

√
−3 does

not exist.

Solution. Let us first compute the common divisors of 4 and 2+2
√
−3. That is assume that (a+b

√
−3)

∣∣ 4
and (a+ b

√
−3)

∣∣ (2 + 2
√
−3) for some a, b ∈ Z. In particular, (a, b) ̸= (0, 0). Then there exist x, y, z, w ∈ Z

such that

(a+ b
√
−3)(x+ y

√
−3) = 4,

(a+ b
√
−3)(z + w

√
−3) = 2 + 2

√
−3.
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We want to solve for x, y, z, w. Hence we divide both sides by a+ b
√
−3 to obtain

x+ y
√
−3 =

4

a+ b
√
−3

,

z + w
√
−3 =

2 + 2
√
−3

a+ b
√
−3

.

We now multiply the numerator and denominator of the right hand side by a− b
√
−3 to obtain

x+ y
√
−3 =

4

a2 + 3b2
(a− b

√
−3),

z + w
√
−3 =

2 + 2
√
−3

a2 + 3b2
(a− b

√
−3).

Rearranging, we obtain

x+ y
√
−3 =

4a

a2 + 3b2
− 4b

a2 + 3b2
√
−3,

z + w
√
−3 =

2a+ 6b

a2 + 3b2
+

2a− 2b

a2 + 3b2
√
−3.

It follows that

x =
4a

a2 + 3b2
,

y =
−4b

a2 + 3b2
,

z =
2a+ 6b

a2 + 3b2
,

w =
2a− 2b

a2 + 3b2
.

We investigate the cases for a and b so that all of x, y, z, w are integers:

• If |a| > 4, then x is not an integer.

• If |b| > 2, then y is not an integer.

• If |a| = 4 and |b| = 1, then x is not an integer.

• If |a| = 4 and b = 0, then z is not an integer.

• If |a| = 3 and |b| = 1, then y is not an integer.

• If |a| = 3 and |b| = 0, then x is not an integer.

• If |a| = 2 and |b| = 1, then x is not an integer.

• If a = 0 and b = 0, then this contradicts (a, b) ̸= (0, 0).

• If a = 0 and |b| = 1, then y is not an integer.

It follows then that

(a, b) ∈ {(2, 0), (−2, 0), (1, 1), (1, 0), (1,−1), (−1, 1), (−1, 0), (−1,−1)},

or that the common divisors of 4 and 2 + 2
√
−3 are given by the set

C = {2,−2, 1 +
√
−3, 1, 1−

√
−3,−1 +

√
−3,−1,−1−

√
−3}.
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Hence if d := gcd(4, 2+ 2
√
−3) exists, then d ∈ C. Notice that 2 ∤ 1 hence d ̸= 1. Also 2 does not divide any

of 1+
√
−3, 1−

√
−3,−1+

√
−3,−1−

√
−3. Indeed, say that 2

∣∣ (1+√
−3). Then there exist u, v ∈ Z[

√
−3]

such that
2(u+ v

√
−3) = 1 +

√
−3

or 2u = 1 which is a contradiction, and similarly for the rest. Hence we are left with the only possibility that
d = 2 (the case d = −2 is the same since gcd is defined only up to a unit). But we claim that (1+

√
−3) ∤ 2.

Indeed, assuming otherwise there exist k, l ∈ Z[
√
−3] such that

(1 +
√
−3)(k + l

√
−3) = 2. (1)

Taking complex norms gives
(1 + 3)(k2 + 3l2) = 4

or k2 +3l2 = 1. Then only solutions are then k = ±1, l = 0. But these are not solutions of (1). Hence d ̸= 2
and so gcd(4, 2 + 2

√
−3) does not exist.

Problem 4. Let k ∈ Z and consider the map ϕ : Z[
√
k] → Z defined by ϕ(a+ b

√
k) = |a2 − kb2|.

(a) Show that ϕ is multiplicative, that is for all a, b, c, d ∈ Z we have ϕ((a + b
√
k)(c + d

√
k)) = ϕ(a +

b
√
k)ϕ(c+ d

√
k).

(b) Show that for all a, b, c, d ∈ Z we have that if (a+ b
√
k)

∣∣ (c+ d
√
k), then ϕ(a+ b

√
k)

∣∣ ϕ(c+ d
√
k).

(c) Show that a+ b
√
k ∈ Z[

√
k] is a unit if and only if ϕ(a+ b

√
k) = 1.

Solution.

(a) We compute

ϕ((a+ b
√
k)(c+ d

√
k)) = ϕ((ac+ kbd) + (ad+ bc)

√
k)

= |(ac+ kbd)2 − k(ad+ bc)2|
= |a2c2 + 2kabcd+ k2b2d2 − ka2d2 − 2kabcd− kb2c2|
= |a2c2 − kb2c2 + k2b2d2 − ka2d2|
= |c2(a2 − kb2)− kd2(a2 − kb2)|
= |(a2 − kb2)(c2 − kd2)|
= |a2 − kb2||c2 − kd2|

= ϕ(a+ b
√
k)ϕ(c+ d

√
k).

(b) By assumption there exist x, y ∈ Z such that

(c+ d
√
k) = (x+ y

√
k)(a+ b

√
k).

By (a) we obtain

ϕ(c+ d
√
k) = ϕ(x+ y

√
k)ϕ(a+ b

√
k)

and so ϕ(a+ b
√
k)

∣∣ ϕ(c+ d
√
k).

(c) Assume that a+ b
√
k ∈ Z[

√
k] is a unit. Then (a+ b

√
k)

∣∣ 1 and so by (b) we obtain that ϕ(a+ b
√
k)

∣∣
ϕ(1) = 1. Hence ϕ(a + b

√
k) ∈ {−1, 1}. But since ϕ(a + b

√
k) = |a2 − kb2| ≥ 0, we conclude that

ϕ(a+ b
√
k) = 1.

Assume now that ϕ(a+ b
√
k) = 1. Then |a2 − kb2| = 1. We then have

(a+ b
√
k)(a− b

√
k) = a2 − kb2 = ±1

and hence either a− b
√
k or −a+ b

√
k is an inverse of a+ b

√
k.
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Problem 5. (Exercise 11.3.4 in the book.) Let a = 3 + 2i and b = 2 − 3i be two elements in Z[i]. Find q
and r in Z[i] such that a = bq + r and ϕ(r) < ϕ(b), where ϕ(x+ yi) = x2 + y2.

Solution. We compute
a

b
=

3 + 2i

2− 3i
=

(3 + 2i)(2 + 3i)

(2− 3i)(2 + 3i)
=

13i

4 + 9
= i.

Hence a = bi+ 0 and ϕ(0) < ϕ(b).

Problem 6. (Exercise 11.3.2 in the book) Show that the ring Z[
√
2] is a euclidean domain and a UFD.

Explain why in the UFD Z[
√
2] we have

(5 +
√
2)(2−

√
2) = (11− 7

√
2)(2 +

√
2)

even though each of the factors is irreducible.

Solution. We define the function ϕ : Z[
√
2] → Z given by ϕ(a + b

√
2) = |a2 − 2b2| and we show that this

gives Z[
√
2] the structure of a euclidean domain. By Problem 4(a) we have that ϕ is multiplicative and so

condition (i) of Definition 2.1 follows. For condition (ii), let α = a1 + a2
√
2, β = b1 + b2

√
2 ∈ Z[

√
2] with

β ̸= 0. Then there exist x, y ∈ Q such that

α

β
= x+ y

√
2.

Let c1 ∈ Z be the closest integer to x so that |x − c1| ≤ 1
2 . Similarly let c2 ∈ Z be such that |y − c2| ≤ 1

2 .

Set q := c1 + c2
√
2 ∈ Z[

√
2]. Then

α = β(x+ y
√
2)

= β((x− c1) + (y − c2)
√
2 + (c1 + c2

√
2))

= qβ + β((x− c1) + (y − c2)
√
2).

Set r := β((x− c1) + (y − c2)
√
2) = α− qβ ∈ Z[

√
2]. It remains to show that ϕ(r) < ϕ(β). Clearly we may

extend ϕ to a function ϕ : Q[
√
2] → Z, so that again we have

ϕ((a+ b
√
2)(c+ d

√
2)) = ϕ(a+ b

√
2)ϕ(c+ d

√
2)

for all a, b, c, d ∈ Q. Then we have

ϕ(r) = ϕ(β)ϕ((x− c1) + (y − c2)
√
2)

= ϕ(β)|(x− c1)
2 − 2(y − c2)

2|
≤ ϕ(β)((x− c1)

2 + 2(y − c2)
2)

≤ ϕ(β)(
1

4
+ 2

1

4
)

=
3

4
ϕ(β) < ϕ(β),

as required. Hence Z[
√
2] is a Euclidean domain and so it is a UFD. Now consider the factorizations

(5 +
√
2)(2−

√
2) = (11− 7

√
2)(2 +

√
2).

in Z[
√
2]. Since Z[

√
2] is a UFD and these elements are irreducible, it follows that by factoring out some

units we obtain the same factorization. By Problem 4(c) we have that u ∈ Z[
√
2] is a unit if and only if

ϕ(u) = 1. Notice that

ϕ(2−
√
2) = |22 − 2 · 12| = 2 = ϕ(2 +

√
2)
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And hence we suspect that 2−
√
2 and 2 +

√
2 differ by a unit. Indeed, we have

2−
√
2

2 +
√
2
=

(2−
√
2)2

2
=

4− 4
√
2 + 2

2
= 3− 2

√
2

and so 2−
√
2 = (2 +

√
2)(3− 2

√
2). Since ϕ(3− 2

√
2) = 9− 8 = 1, we have that 3− 2

√
2 is indeed a unit.

Then, we have

(5 +
√
2)(2−

√
2) = (5 +

√
2)(2 +

√
2)(3− 2

√
2) = (5 +

√
2)(3− 2

√
2)(2 +

√
2) = (11− 7

√
2)(2 +

√
2),

and hence no contradiction.

Problem 7. (Exercise 11.3.8 in the book.) Show that Z[
√
−6] is not a euclidean domain.

Solution. It is enough to show that Z[
√
−6] is not a PID. Notice that 2

∣∣ −6 but −6 =
√
−6

√
−6 in Z[

√
−6]

and 2 ∤
√
−6. Hence 2 is not prime. We claim that 2 is irreducible. Since ϕ(2) = 4 ̸= 1, we have that 2 is

not a unit by Problem 4(c). Next assume that

2 = (a+ b
√
−6)(c+ d

√
−6)

for some a, b, c, d ∈ Z and that c + d
√
−6 is not a unit, and we show that a + b

√
−6 is a unit. By Problem

4(b) we have that ϕ(c + d
√
−6)

∣∣ ϕ(2) = 4. Since ϕ(c + d
√
−6) ≥ 0, we have that ϕ(c + d

√
−6) ∈ {1, 2, 4}.

Since c+d
√
−6 is not a unit, we have that ϕ(c+d

√
−6) ∈ {2, 4} by Problem 4(c). Assume to a contradiction

that ϕ(c+ d
√
−6) = 2. Then

2 = ϕ(c+ d
√
−6) = |c2 + 6d2| = c2 + 6d2,

and c2 + 6d2 = 2 clearly has no solutions c, d ∈ Z. Hence ϕ(c + d
√
−6) = 4. But then by Problem 4(a) we

have ϕ(a+ b
√
−6) = 1 and so a+ b

√
−6 is a unit by Problem 4(c). Since every irreducible element in a PID

is prime, and since 2 is irreducible but not prime, we conclude that Z[
√
−6] is not a PID and hence not a

Euclidean domain.

Problem 8. (Exercise 15.1.1 in the book.) Show that f(x) = x3 + 3x + 2 ∈ Z7[x] is irreducible over the
field Z7.

Solution. We compute f(0) = 2, f(1) = 6, f(2) = 2, f(3) = 3, f(4) = 1, f(5) = 2, f(6) = 5 and so f has
no root in Z7. It follows by Lemma 3.4(3) that f is irreducible in Z7[x].

Problem 9. (Exercise 15.1.4 in the book.) Show that f(x) = x3 + ax2 + bx+ 1 ∈ Z[x] is reducible over Z
if and only if either a = b or a+ b = −2.

Solution. By Lemma 3.6(3) f is reducible over Z if and only if f has a root in Z. Equivalently, there exists
r ∈ Z such that

r3 + ar2 + br + 1 = 0.

We may rewrite this as
r(r2 + ar + b) = −1

to obtain that either r = 1 or r = −1. If r = 1, then we have 1 + a+ b = −1 and so a+ b = −2. If r = −1,
then we have −(1− a+ b) = −1 and so a = b.

Problem 10. (Exercise 15.1.2 in the book.) Show that f(x) = x4 + 8 ∈ Q[x] is irreducible over Q.

Solution. By Lemma 3.6 it is enough to show that f is irreducible over Z. If f(x) = g(x)h(x) with
g(x), h(x) ∈ Z[x], then g and h are monic polynomials since f is monic and deg(g),deg(h) ∈ {1, 2, 4} since
deg(g) deg(h) = deg(f) = 4. Assume to a contradiction that deg(g) = 1. Then g(x) = x + a ∈ Z[x] has a
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root in Z, but f has no root in Z. Hence deg(g) > 1. If deg(g) = 4, then deg(h) = 1 and again we reach a
contradiction. Hence deg(g) = deg(h) = 2. Then

g(x) = x2 + ax+ b

h(x) = x2 + cx+ d

for some a, b, c, d ∈ Z. Then

x4 + 8 = (x2 + ax+ b)(x2 + cx+ d) = x4 + (c+ a)x3 + (d+ ac+ b)x2 + (ad+ bc)x+ bd

implies

c+ a = 0

d+ ac+ b = 0

ad+ bc = 0

bd = 8

From a = −c, we obtain

d+ b− c2 = 0

−c(d− b) = 0

bd = 8

and so either d − b = 0 or c = 0 and so d + b = 0. In any case, d = ±b. But then bd = 8 gives ±b2 = 8,
which is impossible. Hence such a decomposition does not exist and f is irreducible.

Problem 11. Prove or disprove that 19
√
17000 is a rational number.

Solution. Let r = 19
√
17000. Then r19−17000 = 0 and so r is a root of the polynomial f(x) = x19−17000 ∈

Z[x]. We have 17000 = 23 · 53 · 17 and so by applying Eisenstein Criterion on f(x) with p = 17 we have that
f(x) is irreducible over Q. By Lemma 3.4(2) we conclude that f has no root in Q. Since r is a root of f , it
follows that r ̸∈ Q.

Problem 12. Find the unique factorization of f(x) = x4 + x3 − 3x2 + 3x+ 3 ∈ Z5[x]

Solution. We first find a root of f(x). We have

f(x) = x4 + x3 − 3x2 + 3x+ 3 = x4 + x3 + 2x2 + 3x+ 3

and
f(0) = 3, f(1) = 0.

and so 1 is a root of f . Dividing f(x) by x− 1 we obtain

f(x) = (x− 1)(x3 + 2x2 + 4x+ 2) = (x+ 4)g(x),

where g(x) = x3+2x2+4x+2 and x+4 is irreducible by Lemma 3.4(1). Next we do the same process with
g(x). We know that 0 is not a root of g (since it is not a root of f) and so we start checking from 1.

g(1) = 4, g(2) = 1, g(3) = 4, g(4) = 4.

Hence g has no root in Z5. Since deg(g) = 3, we have by Lemma 3.4(3) that g is irreducible. Hence

f(X) = (x+ 4)(x3 + 2x2 + 4x+ 2),

is the unique factorization of f in Z5[x].
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Problem 13. (Exercise 15.2.4 in the book.) Find the smallest extension of Q having a root of f(x) =
x2 + 4 ∈ Q[x].

Solution. The roots of f in C are 2i and −2i. Hence f has a root in Q(i). Since x2 + 1 is irreducible, we
have

[Q(i) : Q] = deg(x2 + 1) = 2.

Since this is the smallest possible degree of a non-trivial field extension, we conclude that Q ⊆ Q(i) is the
smallest extension of Q having a root of f .

Problem 14. (Exercise 15.2.1 in the book.) Show that p(x) = x2 − x − 1 ∈ Z3[x] is irreducible over Z3.
Show that there exists an extension K of Z3 with nine elements having all roots of p(x).

Solution. Since p(0) = 2, p(1) = 2, p(2) = 1, we conclude that p is irreducible over Z3[x] by Lemma 3.4(3).
Let K = Z3[x]/(p(x)) and α = x = x+ (p(x)) ∈ K. Then in K we have

p(α) = x2 − x− 1 = x2 − x− 1 = x2 − x− 1 = p(x) = 0

and so α is a root of p. Since p is irreducible, we have that K = Z3(α) and

[Z3(α) : Z3] = deg(p) = 2

and 1, α is a Z3-basis of Z3(α). In other words,

Z3(α) = {a+ bα | a, b ∈ Z3} = {0, 1, 2, α, 1 + α, 2 + α, 2α, 1 + 2α, 2 + 2α}

and Z3(α) has 9 elements. Multiplication in Z3(α) is done via α2 − α − 1 = 0. To find the other root of p
we have

x2 − x− 1 = p(x) = (x− α)(x− β) = x2 + (β − α)x+ αβ

for some β ∈ Z3(α). We obtain that αβ = −1 and so β = −α−1. From α2 −α− 1 = 0 we have α(α− 1) = 1
and so β = −α−1 = −(α− 1) = 1 + 2α is the other root of p.

Problem 15. (Exercise 15.2.2 in the book.) Show that f(x) = x3 − 2 ∈ Q[x] is irreducible over Q. Find (if
it exists) an extension K of Q having all roots of x3 − 2 such that [K : Q] = 6.

Solution. The polynomial f is irreducible over Q by Eisenstein criterion for p = 2. The roots of f in C are

r1 = 21/3e2πi/3, r2 = 21/3e4πi/3, r3 = 21/3e6πi/3 = 21/3.

Let ωk = e2πik/3 for k = 1, 2, 3. Then rk = 21/3ωk. Then f has all its roots in K = Q(21/3, ω1). It remains
to show that [Q(21/3, ω1) : Q] = 6. Since 21/3 is a root of f , and since f is irreducible, we have that

[Q(21/3) : Q] = deg(f) = 3.

On the other hand, we have that ω1 ̸∈ Q(21/3) since ω1 ̸∈ R. Notice that ω1 is a root of x3 − 1 and

x3 − 1 = (x− 1)(x2 + x+ 1).

Since ω1 is not a root of x − 1, we have that ω1 is a root of x2 + x + 1. Moreover, since ω1 is not real, the
other root of x2 + x+ 1 is also not real and so x2 + x+ 1 is irreducible over Q(21/3). Therefore

[Q(21/3, ω1) : Q(21/3)] = deg(x2 + x+ 1) = 2.

Since Q ⊆ Q(21/3) ⊆ Q(21/3, ω1) = K, we conclude that

[K : Q] = [Q(21/3, ω1) : Q] = [Q(21/3, ω1) : Q(21/3)] · [Q(21/3) : Q] = 2 · 3 = 6,

as required.
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