Galois theory - Problem Set 1

To be solved on Monday 23.01

Problem 1. Let R be an integral domain.

- (a) Let $a, x, y \in R$, $a \neq 0$. Show that if ax = ay, then x = y.
- (b) Let $a, b \in R$. Show that if $a \mid b$ and $b \mid a$, then there exists a unit $u \in R$ such that b = ua.
- (c) Let $a, u \in R$ where u is a unit. Show that a is a unit if and only if ua is a unit.
- (d) Let $a, b, u \in R$ where u is a unit. Show that $a \mid b$ if and only if $ua \mid b$.
- (e) Let $p \in R$. Show that if p is prime, then p is irreducible.
- (f) Let $p, u \in R$ where u is a unit. Show that p is irreducible respectively prime if and only if pu is irreducible respectively prime.
- (g) Let $a, p \in R$ with a not a unit and p prime. Show that if $a \mid p$, then there exists a unit $u \in R$ such that a = up.
- (h) Let $a, b \in R$. Show that $a \mid b$ if and only if $(b) \subseteq (a)$.

Solution.

- (a) Since ax = ay we have a(x y) = ax ay = 0. Since R is an integral domain, we have a = 0 or x y = 0. Since $a \neq 0$, we conclude that x y = 0 or x = y.
- (b) If b = 0, then since $b \mid a$ we have that a = 0 and so the claim holds for u = 1. Assume that $b \neq 0$. Since $a \mid b$, there exists $u \in R$ such that b = ua. It remains to show that u is a unit. Since $b \mid a$, there exists $v \in R$ such that a = vb. Then b = ua = uvb and so b1 = b(uv). By (a) we conclude that 1 = uv and so u is a unit.
- (c) If a is a unit, then $(ua)a^{-1}u^{-1} = 1$ and so ua is a unit too. If ua is a unit, then $a(u(ua)^{-1}) = 1$ and so a is a unit.
- (d) We have that $a \mid b$ if and only if there exists $c \in R$ with b = ca. Equivalently, we have $b = (cu^{-1})ua$, or $ua \mid b$.
- (e) Let p = ab for some $a, b \in R$. It is enough to show that a or b is a unit. Since p is prime, we have that $p \mid a$ or $p \mid b$. Without loss of generality, assume that $p \mid a$. Then a = pc for some $c \in R$ and so

$$p1 = p = ab = (cp)b = p(cb)$$

gives p1 = p(cb). By (a) we conclude that 1 = cb and so b is a unit, as required.

(f) Since u is a unit, we have by (c) that p is not a unit if and only if up is not a unit. Hence we only need to show that the second condition in the definition of irreducible and prime holds for p if and only if it holds for up. Then p being prime is equivalent to up being prime by (d) and it remains to consider the irreducible case.

Assume that p is irreducible and we show that up is irreducible. Let up = ab for some $a, b \in R$ and assume that b is not a unit. It is enough to show that a is a unit. Then $p = u^{-1}ab$ and since b is not a unit and p is irreducible, we conclude that $u^{-1}a$ is a unit. Hence $a = uu^{-1}a$ is a unit.

Assume that up is irreducible and we show that p is irreducible. Let p = ab for some $a, b \in R$ and assume that b is not a unit. It is enough to show that a is a unit. Then up = u(ab) = (ua)b. Since up is irreducible, we conclude that ua is a unit. Hence $a = u^{-1}ua$ is a unit.

- (g) Since $a \mid p$, there exists $u \in R$ such that p = ua. By (e) we have that p is irreducible. Since a is not a unit, we conclude that u is a unit.
- (h) We have that $a \mid b$ if and only if b = ca for some $c \in R$. Equivalently, $b \in (a)$ or $(b) \subseteq (a)$.

Problem 2. Let R be an integral domain such that for every $x, y \in R$ we have that gcd(x, y) exists. Let $a, b, c \in R$.

- (a) (Exercise 11.1.1 in the book.) Show that gcd(ca, cb) = c gcd(a, b).
- (b) (Exercise 11.1.2 in the book.) Show that if gcd(a, b) = 1 and if $a \mid c$ and $b \mid c$, then $ab \mid c$.
- (c) (Exercise 11.1.3 in the book.) Show that if gcd(a, b) = 1 and $b \mid ac$, then $b \mid c$.

Solution.

(a) We have that gcd(a, b) = 0 if and only if a = b = 0 since 0 divides only 0. Hence the claim is trivially true if c = 0 or a = b = 0 and so we may assume that $c \neq 0$ and $gcd(a, b) \neq 0$.

Let $d = \gcd(a, b)$ and $e = \gcd(ca, cb)$. Since $d \mid a$ and $d \mid b$, there exist $r_1, r_2 \in R$ such that $a = r_1 d$ and $b = r_2 d$. Then $ca = r_1 cd$ and $cb = r_2 cd$ and so $cd \mid ca$ and $cd \mid cb$. Hence $cd \mid \gcd(ca, cb) = e$ and so there exists $s \in R$ such that e = s(cd). Recall that the greatest common divisor is defined only up to a unit by Remark 1.10(1). Hence it is enough to show that s is a unit. Since $e \mid ca$ and $e \mid cb$, there exist $t_1, t_2 \in R$ such that $ca = t_1 e$ and $cb = t_2 e$. Using all this we have

$$(cd)r_1 = c(r_1d) = ca = t_1e = t_1(scd) = (cd)(t_1s)$$

and so by Problem 1(a) we have that $r_1 = t_1 s$. Hence $a = t_1(sd)$. Similarly we have that $b = t_2(sd)$. Hence $sd \mid a$ and $sd \mid b$, which imply that $sd \mid \gcd(a, b) = d$. Then there exists $u \in R$ with d = u(sd) = (us)d. By Problem 1(a) we conclude that us = 1 and so s is a unit as required.

(b) Since $a \mid c$ and $b \mid c$, there exist $r_1, r_2 \in R$ such that $c = r_1 a$ and $c = r_2 b$. Then by (a) we have

$$c = c1 = c \operatorname{gcd}(a, b) = \operatorname{gcd}(ca, cb) = \operatorname{gcd}(r_2ba, r_1ab) = ab \operatorname{gcd}(r_2, r_1).$$

and so $ab \mid c$.

(c) Since $b \mid ac$, there exists $r \in R$ such that ac = rb. Then by (a) we have

$$c=c1=c\gcd(a,b)=\gcd(ca,cb)=\gcd(rb,cb)=b\gcd(r,c),$$

and so $b \mid c$.

Problem 3. (Exercise 11.1.8 in the book.) Show that in the ring $\mathbb{Z}[\sqrt{-3}]$ the gcd of 4 and $2 + 2\sqrt{-3}$ does not exist.

Solution. Let us first compute the common divisors of 4 and $2+2\sqrt{-3}$. That is assume that $(a+b\sqrt{-3}) | 4$ and $(a+b\sqrt{-3}) | (2+2\sqrt{-3})$ for some $a, b \in \mathbb{Z}$. In particular, $(a, b) \neq (0, 0)$. Then there exist $x, y, z, w \in \mathbb{Z}$ such that

$$(a + b\sqrt{-3})(x + y\sqrt{-3}) = 4,$$

 $(a + b\sqrt{-3})(z + w\sqrt{-3}) = 2 + 2\sqrt{-3}.$

We want to solve for x, y, z, w. Hence we divide both sides by $a + b\sqrt{-3}$ to obtain

$$x + y\sqrt{-3} = \frac{4}{a + b\sqrt{-3}},$$
$$z + w\sqrt{-3} = \frac{2 + 2\sqrt{-3}}{a + b\sqrt{-3}}.$$

We now multiply the numerator and denominator of the right hand side by $a - b\sqrt{-3}$ to obtain

$$x + y\sqrt{-3} = \frac{4}{a^2 + 3b^2}(a - b\sqrt{-3}),$$

$$z + w\sqrt{-3} = \frac{2 + 2\sqrt{-3}}{a^2 + 3b^2}(a - b\sqrt{-3}).$$

Rearranging, we obtain

$$x + y\sqrt{-3} = \frac{4a}{a^2 + 3b^2} - \frac{4b}{a^2 + 3b^2}\sqrt{-3},$$

$$z + w\sqrt{-3} = \frac{2a + 6b}{a^2 + 3b^2} + \frac{2a - 2b}{a^2 + 3b^2}\sqrt{-3}.$$

It follows that

$$x = \frac{4a}{a^2 + 3b^2},$$

$$y = \frac{-4b}{a^2 + 3b^2},$$

$$z = \frac{2a + 6b}{a^2 + 3b^2},$$

$$w = \frac{2a - 2b}{a^2 + 3b^2}.$$

We investigate the cases for a and b so that all of x, y, z, w are integers:

- If |a| > 4, then x is not an integer.
- If |b| > 2, then y is not an integer.
- If |a| = 4 and |b| = 1, then x is not an integer.
- If |a| = 4 and b = 0, then z is not an integer.
- If |a| = 3 and |b| = 1, then y is not an integer.
- If |a| = 3 and |b| = 0, then x is not an integer.
- If |a| = 2 and |b| = 1, then x is not an integer.
- If a = 0 and b = 0, then this contradicts $(a, b) \neq (0, 0)$.
- If a = 0 and |b| = 1, then y is not an integer.

It follows then that

$$(a,b) \in \{(2,0), (-2,0), (1,1), (1,0), (1,-1), (-1,1), (-1,0), (-1,-1)\},\$$

or that the common divisors of 4 and $2 + 2\sqrt{-3}$ are given by the set

$$C = \{2, -2, 1 + \sqrt{-3}, 1, 1 - \sqrt{-3}, -1 + \sqrt{-3}, -1, -1 - \sqrt{-3}\}$$

Hence if $d \coloneqq \gcd(4, 2 + 2\sqrt{-3})$ exists, then $d \in C$. Notice that $2 \nmid 1$ hence $d \neq 1$. Also 2 does not divide any of $1 + \sqrt{-3}, 1 - \sqrt{-3}, -1 + \sqrt{-3}, -1 - \sqrt{-3}$. Indeed, say that $2 \mid (1 + \sqrt{-3})$. Then there exist $u, v \in \mathbb{Z}[\sqrt{-3}]$ such that

$$2(u+v\sqrt{-3})=1+\sqrt{-3}$$

or 2u = 1 which is a contradiction, and similarly for the rest. Hence we are left with the only possibility that d = 2 (the case d = -2 is the same since gcd is defined only up to a unit). But we claim that $(1 + \sqrt{-3}) \nmid 2$. Indeed, assuming otherwise there exist $k, l \in \mathbb{Z}[\sqrt{-3}]$ such that

$$(1+\sqrt{-3})(k+l\sqrt{-3}) = 2.$$
 (1)

Taking complex norms gives

$$(1+3)(k^2+3l^2) = 4$$

or $k^2 + 3l^2 = 1$. Then only solutions are then $k = \pm 1, l = 0$. But these are not solutions of (1). Hence $d \neq 2$ and so $gcd(4, 2 + 2\sqrt{-3})$ does not exist.

Problem 4. Let $k \in \mathbb{Z}$ and consider the map $\phi : \mathbb{Z}[\sqrt{k}] \to \mathbb{Z}$ defined by $\phi(a + b\sqrt{k}) = |a^2 - kb^2|$.

- (a) Show that ϕ is multiplicative, that is for all $a, b, c, d \in \mathbb{Z}$ we have $\phi((a + b\sqrt{k})(c + d\sqrt{k})) = \phi(a + b\sqrt{k})\phi(c + d\sqrt{k})$.
- (b) Show that for all $a, b, c, d \in \mathbb{Z}$ we have that if $(a + b\sqrt{k}) \mid (c + d\sqrt{k})$, then $\phi(a + b\sqrt{k}) \mid \phi(c + d\sqrt{k})$.
- (c) Show that $a + b\sqrt{k} \in \mathbb{Z}[\sqrt{k}]$ is a unit if and only if $\phi(a + b\sqrt{k}) = 1$.

Solution.

(a) We compute

$$\begin{split} \phi((a+b\sqrt{k})(c+d\sqrt{k})) &= \phi((ac+kbd) + (ad+bc)\sqrt{k}) \\ &= |(ac+kbd)^2 - k(ad+bc)^2| \\ &= |a^2c^2 + 2kabcd + k^2b^2d^2 - ka^2d^2 - 2kabcd - kb^2c^2| \\ &= |a^2c^2 - kb^2c^2 + k^2b^2d^2 - ka^2d^2| \\ &= |c^2(a^2 - kb^2) - kd^2(a^2 - kb^2)| \\ &= |(a^2 - kb^2)(c^2 - kd^2)| \\ &= |a^2 - kb^2||c^2 - kd^2| \\ &= \phi(a+b\sqrt{k})\phi(c+d\sqrt{k}). \end{split}$$

(b) By assumption there exist $x, y \in \mathbb{Z}$ such that

$$(c + d\sqrt{k}) = (x + y\sqrt{k})(a + b\sqrt{k}).$$

By (a) we obtain

$$\phi(c + d\sqrt{k}) = \phi(x + y\sqrt{k})\phi(a + b\sqrt{k})$$

and so $\phi(a + b\sqrt{k}) \mid \phi(c + d\sqrt{k})$.

(c) Assume that $a + b\sqrt{k} \in \mathbb{Z}[\sqrt{k}]$ is a unit. Then $(a + b\sqrt{k}) | 1$ and so by (b) we obtain that $\phi(a + b\sqrt{k}) | \phi(1) = 1$. Hence $\phi(a + b\sqrt{k}) \in \{-1, 1\}$. But since $\phi(a + b\sqrt{k}) = |a^2 - kb^2| \ge 0$, we conclude that $\phi(a + b\sqrt{k}) = 1$.

Assume now that $\phi(a + b\sqrt{k}) = 1$. Then $|a^2 - kb^2| = 1$. We then have

$$(a + b\sqrt{k})(a - b\sqrt{k}) = a^2 - kb^2 = \pm 1$$

and hence either $a - b\sqrt{k}$ or $-a + b\sqrt{k}$ is an inverse of $a + b\sqrt{k}$.

Problem 5. (Exercise 11.3.4 in the book.) Let a = 3 + 2i and b = 2 - 3i be two elements in $\mathbb{Z}[i]$. Find q and r in $\mathbb{Z}[i]$ such that a = bq + r and $\phi(r) < \phi(b)$, where $\phi(x + yi) = x^2 + y^2$.

Solution. We compute

$$\frac{a}{b} = \frac{3+2i}{2-3i} = \frac{(3+2i)(2+3i)}{(2-3i)(2+3i)} = \frac{13i}{4+9} = i.$$

Hence a = bi + 0 and $\phi(0) < \phi(b)$.

Problem 6. (Exercise 11.3.2 in the book) Show that the ring $\mathbb{Z}[\sqrt{2}]$ is a euclidean domain and a UFD. Explain why in the UFD $\mathbb{Z}[\sqrt{2}]$ we have

$$(5+\sqrt{2})(2-\sqrt{2}) = (11-7\sqrt{2})(2+\sqrt{2})$$

even though each of the factors is irreducible.

Solution. We define the function $\phi : \mathbb{Z}[\sqrt{2}] \to \mathbb{Z}$ given by $\phi(a + b\sqrt{2}) = |a^2 - 2b^2|$ and we show that this gives $\mathbb{Z}[\sqrt{2}]$ the structure of a euclidean domain. By Problem 4(a) we have that ϕ is multiplicative and so condition (i) of Definition 2.1 follows. For condition (ii), let $\alpha = a_1 + a_2\sqrt{2}, \beta = b_1 + b_2\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ with $\beta \neq 0$. Then there exist $x, y \in \mathbb{Q}$ such that

$$\frac{\alpha}{\beta} = x + y\sqrt{2}.$$

Let $c_1 \in \mathbb{Z}$ be the closest integer to x so that $|x - c_1| \leq \frac{1}{2}$. Similarly let $c_2 \in \mathbb{Z}$ be such that $|y - c_2| \leq \frac{1}{2}$. Set $q \coloneqq c_1 + c_2\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$. Then

$$\begin{aligned} \alpha &= \beta(x + y\sqrt{2}) \\ &= \beta((x - c_1) + (y - c_2)\sqrt{2} + (c_1 + c_2\sqrt{2})) \\ &= q\beta + \beta((x - c_1) + (y - c_2)\sqrt{2}). \end{aligned}$$

Set $r \coloneqq \beta((x - c_1) + (y - c_2)\sqrt{2}) = \alpha - q\beta \in \mathbb{Z}[\sqrt{2}]$. It remains to show that $\phi(r) < \phi(\beta)$. Clearly we may extend ϕ to a function $\phi : \mathbb{Q}[\sqrt{2}] \to \mathbb{Z}$, so that again we have

$$\phi((a + b\sqrt{2})(c + d\sqrt{2})) = \phi(a + b\sqrt{2})\phi(c + d\sqrt{2})$$

for all $a, b, c, d \in \mathbb{Q}$. Then we have

$$\begin{split} \phi(r) &= \phi(\beta)\phi((x-c_1) + (y-c_2)\sqrt{2}) \\ &= \phi(\beta)|(x-c_1)^2 - 2(y-c_2)^2| \\ &\leq \phi(\beta)((x-c_1)^2 + 2(y-c_2)^2) \\ &\leq \phi(\beta)(\frac{1}{4} + 2\frac{1}{4}) \\ &= \frac{3}{4}\phi(\beta) < \phi(\beta), \end{split}$$

as required. Hence $\mathbb{Z}[\sqrt{2}]$ is a Euclidean domain and so it is a UFD. Now consider the factorizations

$$(5+\sqrt{2})(2-\sqrt{2}) = (11-7\sqrt{2})(2+\sqrt{2}).$$

in $\mathbb{Z}[\sqrt{2}]$. Since $\mathbb{Z}[\sqrt{2}]$ is a UFD and these elements are irreducible, it follows that by factoring out some units we obtain the same factorization. By Problem 4(c) we have that $u \in \mathbb{Z}[\sqrt{2}]$ is a unit if and only if $\phi(u) = 1$. Notice that

$$\phi(2 - \sqrt{2}) = |2^2 - 2 \cdot 1^2| = 2 = \phi(2 + \sqrt{2})$$

And hence we suspect that $2 - \sqrt{2}$ and $2 + \sqrt{2}$ differ by a unit. Indeed, we have

$$\frac{2-\sqrt{2}}{2+\sqrt{2}} = \frac{(2-\sqrt{2})^2}{2} = \frac{4-4\sqrt{2}+2}{2} = 3-2\sqrt{2}$$

and so $2 - \sqrt{2} = (2 + \sqrt{2})(3 - 2\sqrt{2})$. Since $\phi(3 - 2\sqrt{2}) = 9 - 8 = 1$, we have that $3 - 2\sqrt{2}$ is indeed a unit. Then, we have

$$(5+\sqrt{2})(2-\sqrt{2}) = (5+\sqrt{2})(2+\sqrt{2})(3-2\sqrt{2}) = (5+\sqrt{2})(3-2\sqrt{2})(2+\sqrt{2}) = (11-7\sqrt{2})(2+\sqrt{2}),$$

and hence no contradiction.

Problem 7. (Exercise 11.3.8 in the book.) Show that $\mathbb{Z}[\sqrt{-6}]$ is not a euclidean domain.

Solution. It is enough to show that $\mathbb{Z}[\sqrt{-6}]$ is not a PID. Notice that $2 \mid -6$ but $-6 = \sqrt{-6}\sqrt{-6}$ in $\mathbb{Z}[\sqrt{-6}]$ and $2 \nmid \sqrt{-6}$. Hence 2 is not prime. We claim that 2 is irreducible. Since $\phi(2) = 4 \neq 1$, we have that 2 is not a unit by Problem 4(c). Next assume that

$$2 = (a + b\sqrt{-6})(c + d\sqrt{-6})$$

for some $a, b, c, d \in \mathbb{Z}$ and that $c + d\sqrt{-6}$ is not a unit, and we show that $a + b\sqrt{-6}$ is a unit. By Problem 4(b) we have that $\phi(c + d\sqrt{-6}) \mid \phi(2) = 4$. Since $\phi(c + d\sqrt{-6}) \ge 0$, we have that $\phi(c + d\sqrt{-6}) \in \{1, 2, 4\}$. Since $c + d\sqrt{-6}$ is not a unit, we have that $\phi(c + d\sqrt{-6}) \in \{2, 4\}$ by Problem 4(c). Assume to a contradiction that $\phi(c + d\sqrt{-6}) = 2$. Then

$$2 = \phi(c + d\sqrt{-6}) = |c^2 + 6d^2| = c^2 + 6d^2,$$

and $c^2 + 6d^2 = 2$ clearly has no solutions $c, d \in \mathbb{Z}$. Hence $\phi(c + d\sqrt{-6}) = 4$. But then by Problem 4(a) we have $\phi(a + b\sqrt{-6}) = 1$ and so $a + b\sqrt{-6}$ is a unit by Problem 4(c). Since every irreducible element in a PID is prime, and since 2 is irreducible but not prime, we conclude that $\mathbb{Z}[\sqrt{-6}]$ is not a PID and hence not a Euclidean domain.

Problem 8. (Exercise 15.1.1 in the book.) Show that $f(x) = x^3 + 3x + 2 \in \mathbb{Z}_7[x]$ is irreducible over the field \mathbb{Z}_7 .

Solution. We compute f(0) = 2, f(1) = 6, f(2) = 2, f(3) = 3, f(4) = 1, f(5) = 2, f(6) = 5 and so f has no root in \mathbb{Z}_7 . It follows by Lemma 3.4(3) that f is irreducible in $\mathbb{Z}_7[x]$.

Problem 9. (Exercise 15.1.4 in the book.) Show that $f(x) = x^3 + ax^2 + bx + 1 \in \mathbb{Z}[x]$ is reducible over \mathbb{Z} if and only if either a = b or a + b = -2.

Solution. By Lemma 3.6(3) f is reducible over \mathbb{Z} if and only if f has a root in \mathbb{Z} . Equivalently, there exists $r \in \mathbb{Z}$ such that

$$r^3 + ar^2 + br + 1 = 0.$$

We may rewrite this as

$$r(r^2 + ar + b) = -1$$

to obtain that either r = 1 or r = -1. If r = 1, then we have 1 + a + b = -1 and so a + b = -2. If r = -1, then we have -(1 - a + b) = -1 and so a = b.

Problem 10. (Exercise 15.1.2 in the book.) Show that $f(x) = x^4 + 8 \in \mathbb{Q}[x]$ is irreducible over \mathbb{Q} .

Solution. By Lemma 3.6 it is enough to show that f is irreducible over \mathbb{Z} . If f(x) = g(x)h(x) with $g(x), h(x) \in \mathbb{Z}[x]$, then g and h are monic polynomials since f is monic and $\deg(g), \deg(h) \in \{1, 2, 4\}$ since $\deg(g) \deg(h) = \deg(f) = 4$. Assume to a contradiction that $\deg(g) = 1$. Then $g(x) = x + a \in \mathbb{Z}[x]$ has a

root in \mathbb{Z} , but f has no root in \mathbb{Z} . Hence $\deg(g) > 1$. If $\deg(g) = 4$, then $\deg(h) = 1$ and again we reach a contradiction. Hence $\deg(g) = \deg(h) = 2$. Then

$$g(x) = x^{2} + ax + b$$
$$h(x) = x^{2} + cx + d$$

for some $a, b, c, d \in \mathbb{Z}$. Then

$$x^{4} + 8 = (x^{2} + ax + b)(x^{2} + cx + d) = x^{4} + (c + a)x^{3} + (d + ac + b)x^{2} + (ad + bc)x + bd$$

implies

$$c + a = 0$$
$$d + ac + b = 0$$
$$ad + bc = 0$$
$$bd = 8$$

From a = -c, we obtain

$$d + b - c^{2} = 0$$
$$-c(d - b) = 0$$
$$bd = 8$$

and so either d - b = 0 or c = 0 and so d + b = 0. In any case, $d = \pm b$. But then bd = 8 gives $\pm b^2 = 8$, which is impossible. Hence such a decomposition does not exist and f is irreducible.

Problem 11. Prove or disprove that $\sqrt[19]{17000}$ is a rational number.

Solution. Let $r = \sqrt[19]{17000}$. Then $r^{19} - 17000 = 0$ and so r is a root of the polynomial $f(x) = x^{19} - 17000 \in \mathbb{Z}[x]$. We have $17000 = 2^3 \cdot 5^3 \cdot 17$ and so by applying Eisenstein Criterion on f(x) with p = 17 we have that f(x) is irreducible over \mathbb{Q} . By Lemma 3.4(2) we conclude that f has no root in \mathbb{Q} . Since r is a root of f, it follows that $r \notin \mathbb{Q}$.

Problem 12. Find the unique factorization of $f(x) = x^4 + x^3 - 3x^2 + 3x + 3 \in \mathbb{Z}_5[x]$

Solution. We first find a root of f(x). We have

$$f(x) = x^4 + x^3 - 3x^2 + 3x + 3 = x^4 + x^3 + 2x^2 + 3x + 3$$

and

$$f(0) = 3, f(1) = 0.$$

and so 1 is a root of f. Dividing f(x) by x - 1 we obtain

$$f(x) = (x-1)(x^3 + 2x^2 + 4x + 2) = (x+4)g(x),$$

where $g(x) = x^3 + 2x^2 + 4x + 2$ and x + 4 is irreducible by Lemma 3.4(1). Next we do the same process with g(x). We know that 0 is not a root of g (since it is not a root of f) and so we start checking from 1.

$$g(1) = 4$$
, $g(2) = 1$, $g(3) = 4$, $g(4) = 4$.

Hence g has no root in \mathbb{Z}_5 . Since deg(g) = 3, we have by Lemma 3.4(3) that g is irreducible. Hence

$$f(X) = (x+4)(x^3 + 2x^2 + 4x + 2),$$

is the unique factorization of f in $\mathbb{Z}_5[x]$.

Problem 13. (Exercise 15.2.4 in the book.) Find the smallest extension of \mathbb{Q} having a root of $f(x) = x^2 + 4 \in \mathbb{Q}[x]$.

Solution. The roots of f in \mathbb{C} are 2i and -2i. Hence f has a root in $\mathbb{Q}(i)$. Since $x^2 + 1$ is irreducible, we have

$$[\mathbb{Q}(i):\mathbb{Q}] = \deg(x^2 + 1) = 2.$$

Since this is the smallest possible degree of a non-trivial field extension, we conclude that $\mathbb{Q} \subseteq \mathbb{Q}(i)$ is the smallest extension of \mathbb{Q} having a root of f.

Problem 14. (Exercise 15.2.1 in the book.) Show that $p(x) = x^2 - x - 1 \in \mathbb{Z}_3[x]$ is irreducible over \mathbb{Z}_3 . Show that there exists an extension K of \mathbb{Z}_3 with nine elements having all roots of p(x).

Solution. Since p(0) = 2, p(1) = 2, p(2) = 1, we conclude that p is irreducible over $\mathbb{Z}_3[x]$ by Lemma 3.4(3). Let $K = \mathbb{Z}_3[x]/(p(x))$ and $\alpha = \overline{x} = x + (p(x)) \in K$. Then in K we have

$$p(\alpha) = \overline{x}^2 - \overline{x} - 1 = \overline{x^2} - \overline{x} - \overline{1} = \overline{x^2 - x - 1} = \overline{p(x)} = 0$$

and so α is a root of p. Since p is irreducible, we have that $K = \mathbb{Z}_3(\alpha)$ and

$$[\mathbb{Z}_3(\alpha):\mathbb{Z}_3] = \deg(p) = 2$$

and $1, \alpha$ is a \mathbb{Z}_3 -basis of $\mathbb{Z}_3(\alpha)$. In other words,

$$\mathbb{Z}_{3}(\alpha) = \{a + b\alpha \mid a, b \in \mathbb{Z}_{3}\} = \{0, 1, 2, \alpha, 1 + \alpha, 2 + \alpha, 2\alpha, 1 + 2\alpha, 2 + 2\alpha\}$$

and $\mathbb{Z}_3(\alpha)$ has 9 elements. Multiplication in $\mathbb{Z}_3(\alpha)$ is done via $\alpha^2 - \alpha - 1 = 0$. To find the other root of p we have

$$x^{2} - x - 1 = p(x) = (x - \alpha)(x - \beta) = x^{2} + (\beta - \alpha)x + \alpha\beta$$

for some $\beta \in \mathbb{Z}_3(\alpha)$. We obtain that $\alpha\beta = -1$ and so $\beta = -\alpha^{-1}$. From $\alpha^2 - \alpha - 1 = 0$ we have $\alpha(\alpha - 1) = 1$ and so $\beta = -\alpha^{-1} = -(\alpha - 1) = 1 + 2\alpha$ is the other root of p.

Problem 15. (Exercise 15.2.2 in the book.) Show that $f(x) = x^3 - 2 \in \mathbb{Q}[x]$ is irreducible over \mathbb{Q} . Find (if it exists) an extension K of \mathbb{Q} having all roots of $x^3 - 2$ such that $[K : \mathbb{Q}] = 6$.

Solution. The polynomial f is irreducible over \mathbb{Q} by Eisenstein criterion for p = 2. The roots of f in \mathbb{C} are

$$r_1 = 2^{1/3} e^{2\pi i/3}, \ r_2 = 2^{1/3} e^{4\pi i/3}, \ r_3 = 2^{1/3} e^{6\pi i/3} = 2^{1/3}.$$

Let $\omega_k = e^{2\pi i k/3}$ for k = 1, 2, 3. Then $r_k = 2^{1/3}\omega_k$. Then f has all its roots in $K = \mathbb{Q}(2^{1/3}, \omega_1)$. It remains to show that $[\mathbb{Q}(2^{1/3}, \omega_1) : \mathbb{Q}] = 6$. Since $2^{1/3}$ is a root of f, and since f is irreducible, we have that

$$[\mathbb{Q}(2^{1/3}):\mathbb{Q}] = \deg(f) = 3.$$

On the other hand, we have that $\omega_1 \notin \mathbb{Q}(2^{1/3})$ since $\omega_1 \notin \mathbb{R}$. Notice that ω_1 is a root of $x^3 - 1$ and

$$x^{3} - 1 = (x - 1)(x^{2} + x + 1).$$

Since ω_1 is not a root of x - 1, we have that ω_1 is a root of $x^2 + x + 1$. Moreover, since ω_1 is not real, the other root of $x^2 + x + 1$ is also not real and so $x^2 + x + 1$ is irreducible over $\mathbb{Q}(2^{1/3})$. Therefore

$$[\mathbb{Q}(2^{1/3},\omega_1):\mathbb{Q}(2^{1/3})] = \deg(x^2 + x + 1) = 2.$$

Since $\mathbb{Q} \subseteq \mathbb{Q}(2^{1/3}) \subseteq \mathbb{Q}(2^{1/3}, \omega_1) = K$, we conclude that

$$[K:\mathbb{Q}] = [\mathbb{Q}(2^{1/3},\omega_1):\mathbb{Q}] = [\mathbb{Q}(2^{1/3},\omega_1):\mathbb{Q}(2^{1/3})] \cdot [\mathbb{Q}(2^{1/3}):\mathbb{Q}] = 2 \cdot 3 = 6,$$

as required.