Norwegian University of Science and Technology Department of Mathematical Sciences

Page 1 of 2

Contact during the exam: Christian Skau, phone 91755

Exam in MA3202 Galoisteori

English Saturday 19. may 2012 Time: 09.00 - 13:00

Permitted aids: No printed or handwritten aids permitted

Results: 15. june 2012

Problem 1

- a) Show that 2+i is irreducible in $\mathbf{Z}[i] = \{m+ni|m,n\in\mathbf{Z}\}$, and that 5 is reducible in $\mathbf{Z}[i]$.
- b) Which of the numbers 11, 13 and 19 are irreducible in $\mathbb{Z}[i]$? Give reasons.

Problem 2

Let $\omega \in \mathbb{C}$ be a primitive 13th root of unity, and let $E = \mathbb{Q}(\omega)$.

- a) Show that E is a normal extension of \mathbb{Q} , and determine the cyclic Galois group $G = G(E|\mathbb{Q})$.
- b) How many proper intermediate fields $K, \mathbf{Q} \subset K \subset E$, are there? Give reasons.

Problem 3

Let $f(x) = x^7 - 2 \in \mathbb{Q}[x]$, and let E be the splitting field of f(x) over \mathbb{Q} .

- a) Determine the order of the Galois group G = G(E|Q).
- b) Show that there exists a non-normal subgroup H of G.
- c) Show that there exists a normal subgroup N of G such that G/N is abelian.

Problem 4

Let $E = \mathbf{Q}(\sqrt{2} - 3\sqrt{3})$.

- a) Show that E is a normal extension of Q, and determine G = G(E|Q).
- b) List all the intermediate fields $K, Q \subseteq K \subseteq E$.

Problem 5

We denote by $GF(p^n)$ the finite field with p^n elements, where p is a prime.

a) Let f(x) be an irreducible polynomial of degree 36 over GF(5). By referring to relevant theorems show that f(x) divides the polynomial

$$x^{5^{36}} - x$$

in GF(5)[x], and that f(x) has distinct roots.

b) Let E be the splitting field of f(x) over GF(5). Exhibit by a diagram the inclusion of the intermediate fields $K, GF(5) \subseteq K \subseteq E$.