Problem 1

- a) Write down the irreducible polynomials over $GF(2)(= \mathbb{Z}_2)$ of degrees two and three, respectively.
- b) How many irreducible polynomials of degree four are there over GF(2)?

Problem 2

Let $\mid W$ where $F=GF(5^3),\ E=GF(5^{24}).$ Describe the Galois group G(E|F), and list the fields K such that $F\subseteq K\subseteq E.$

Problem 3

Let $f(x) \in F[x]$ be a non-zero polynomial over the field F with various properties as described below. Let $\alpha \in \overline{F}$, where \overline{F} denotes the algebraic closure of F.

- a) Let $f(\alpha) = 0$. Assume that whenever $g(\alpha) = 0$ for some non-zero $g(x) \in F[x]$, then degree $(f(x)) \leq \text{degree } (g(x))$. Show that f(x) is irreducible over F.
- b) Show the converse of a), that is: Assume f(x) is irreducible over F and $f(\alpha) = 0$. Let $g(\alpha) = 0$ for some non-zero $g(x) \in F[x]$. Show that degree $(f(x)) \leq \text{degree } (g(x))$.

Problem 4

- a) Let $F(\theta)$ $F(\gamma)$ be two Galois extensions of the field F, F F F where char $F(\theta, \gamma)$ is a Galois extension of F.
- b) Assume $G(F(\theta)|F)$ and $G(F(\gamma)|F)$ are both abelian groups. Show that $G(F(\theta,\gamma)|F)$ is an abelian group.

Page 2 of 2

Problem 5

- a) Let $\alpha = \sqrt{2 + \sqrt{2}} \in \mathbf{R}_+$. Find the minimal polynomial of α over \mathbf{Q} .
- b) Show that $Q(\alpha)$ is a normal extension of Q.

(Hint: Consider
$$\alpha\sqrt{2-\sqrt{2}}$$
.)

c) Determine $G(\mathbf{Q}(\alpha)|\mathbf{Q})$ and all the intermediate fields K, where $\mathbf{Q} \subseteq K \subseteq \mathbf{Q}(\alpha)$.

(Hint: Consider
$$\sigma \in G(\mathbf{Q}(\alpha)|\mathbf{Q})$$
 such that $\sigma(\alpha) = \sqrt{2 - \sqrt{2}}$.)

Problem 6

- a) Let $R = \mathbf{Z}[2i] = \{a + 2bi | a, b \in \mathbf{Z}\}$. So R is a subintegral domain of the Gaussian integers $\mathbf{Z}[i] = \{a + bi | a, b \in \mathbf{Z}\}$. Show that 2 and 2i are irreducibles in R.
- b) Show that R is not a UFD.

Problem 7

Show that $\sqrt{2} + \sqrt[3]{3} \notin \mathbf{Q}$.

(Hint: Consider an appropriate field extension of Q.)