
Rings and modules - Problem set 5

To be solved on Friday 10.11

Problem 1. (After Chapter 11.3.) Let R be a PID. Let r, s ∈ R and let d = gcd(r, s). Show that
(r) + (s) = (d).

Problem 2. (After Chapter 20.3) (Exercise 20.3.1 in the book.) Obtain the Smith normal form and rank
for the following matrices over a PID R:

(a)
(

0 2 −1
−3 8 3
2 −4 −1

)
, where R = Z.

(b)
(−X−3 2 0

1 −X 1
1 −3 −X−2

)
, where R = Q[X].

Problem 3. (After Chapter 20.3) (Exercise 20.3.3 in the book.) Find the rank of the subgroup of Z4

generated by each of the following lists of elements.

(a) (3, 6, 9, 0), (−4,−8,−12, 0).

(b) (2, 3, 1, 4), (1, 2, 3, 0), (1, 1, 1, 4).

(c) (−1, 2, 0, 0), (2,−3, 1, 0), (1, 1, 1, 1).

Problem 4. (After Chapter 20.3) (Exercise 20.3.2 in the book.) Find the invariant factors of the following

matrix over Q[X]:

( 5−X 1 −2 4
0 5−X 2 2
0 0 5−X 3
0 0 0 4

)
.

Problem 5. (After Chapter 14.3.) (Exam November 2005, Problem 1.) Let q be a fixed non-zero element
in C, the set of complex numbers. Define the subset Rq of the ring of 4× 4-matrices over C by

Rq =



a 0 0 0
b a 0 0
c 0 a 0
d c −qb a

 | a, b, c, d ∈ C

 .

(a) Show that Rq is a unital ring.

(b) For which q in C is Rq a commutative ring?

(c) For a given element α in C define the subset

Iα =




0 0 0 0
x 0 0 0
αx 0 0 0
y αx −qx 0

 | x, y ∈ C


of Rq. Show that Iα is a left ideal in Rq for all α ∈ C.

(d) Show that each of the left ideals Iα is generated by one element as a left ideal. Show that Iα ∼= Rq/Iαq
as left Rq-modules.
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Problem 6. (After Chapter 10.2.)

(a) Let R be a unital ring. An idempotent e of R is called central if e ∈ Z(R). We say that R is connected if
there exist no nonzero unital rings T1, T2 such that R ∼= T1 × T2. Show that the following are equivalent

(i) R is connected.

(ii) the only central idempotents of R are 0 and 1.

(Hint: to show that (i) implies (ii), assume instead that there exists a central idempotent e ∈ R with
e ̸∈ {0, 1} and consider the ring eR× (1− e)R.)

(b) Let R1, . . . , Rp be unital rings. Show that the following are equivalent.

(i) The ring R1 × · · · ×Rp has exactly 2p central idempotents.

(ii) R1, . . . , Rp are all connected rings.

(Hint: show first that R1 × · · · × Rp has at least 2p idempotents irrespectively of R1, . . . , Rp being con-
nected.)

(c) Let R1, . . . , Rp and S1, . . . , Sq be connected unital rings. Show that if there is a ring isomorphism

R1 × · · · ×Rp
∼= S1 × · · · × Sq,

then p = q.

(d) Let D be a division ring and n > 0 a positive integer. Show that the ring Mn(D) is connected. (Hint:
use Problem 8 from Problem Set 1 to describe the center of Mn(R), using the obvious generalization from
the case 2 to the case n.)

(e) Let D1, . . . , Dp and D′
1, . . . , D

′
q be division rings and let n1, . . . , np and k1, . . . , kq be positive integers.

Show that if there is a ring isomorphism

Mn1(D1)× · · · ×Mnp(Dp) ∼= Mk1(D
′
1)× · · · ×Mkq (D

′
q),

then p = q.

Problem 7. (After Chapter 19.2.) (Exam November 2005, Problem 4.) Let R be a unital ring and let
M be a noetherian left R-module. Show that any surjective homomorphism of R-modules f : M → M is an
isomorphism. (Hint: Consider the chain ker(f) ⊆ ker(f2) ⊆ ker(f3) ⊆ · · · of submodules of M).

Problem 8. (After Chapter 19.3.) (Exam November 2005, Problem 3.) Let C be the field of complex
numbers and C[X] the polynomial ring over C in one variable X. Let α ∈ C be a complex number.

(a) Show that the map ϕα : C[X] → C defined by ϕα(f(X)) = f(α) is a surjective ring homomorphism, and
use this to show that the ideal generated by X − α is a maximal ideal in C[X].

(b) For which n ≥ 1 is the ring ( C[X]
((X−α)n)

C[X]
((X−α)n)

C[X]
((X−α)n)

C[X]
((X−α)n)

)
semisimple?

Problem 9. (After Chapter 19.3.) (Exam December 2015, Problem 2.) Let Λ =
{(

a b c
c a b
b c a

)
| a, b, c ∈ Z6

}
⊆

M3(Z6) be the ring of 3× 3 matrices over Z6.

(a) Prove that Λ is a commutative subring of M3(Z6), the ring of 3× 3-matrices over Z6.

(b) Define Ψ : Λ → Z6 by Ψ
((

a b c
c a b
b c a

))
= a + b + c. Prove that Ψ is a surjective ring homomorphism and

find a set of generators for the kernel of Ψ.

(c) How many maximal ideals in Λ contain the kernel of Ψ? You have to give an argument for your answer.

(d) Is Λ a semisimple ring? You have to give an argument for your answer. (Hint: find how many idempotents
Λ has.)
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Extra problems

The following problems may be a bit more challenging, in case you feel like you need something more.

Problem 10. (After Chapter 19.3.) Let K be a field. A K-algebra Λ is called a division algebra if Λ is a
division ring as a ring, that is Λ ̸= 0 is a unital ring and for every nonzero r ∈ Λ there exists a multiplicative
inverse r−1 ∈ Λ.

(a) Show that if Λ is a semisimple finite-dimensional unital algebra overK, then there exist finite-dimensional
division algebras D1, . . . , Dk over K and positive integers n1, . . . , nk such that

Λ ∼= Mn1
(D1)× · · · ×Mnk

(Dk).

(b) Show that if Λ is a semisimple finite-dimensional algebra over C, then there exist positive integers
n1, . . . , nk such that

Λ ∼= Mn1
(C)× · · · ×Mnk

(C).

(Hint: use the fundamental theorem of algebra.)

Problem 11. (After Chapter 19.3.) The aim of this problem is to prove Maschke’s theorem. Let F be a
field and G be a finite group such that the characteristic of F does not divide the order of G. Recall that

F [G] = {f : G → F | f(g) = 0 for all but finitely many g ∈ G}

with addition given by
(f + h)(g) = f(g) + h(g)

and multiplication given by

(fh)(g) =
∑

g=g1g2

f(g1)h(g2),

where f, h ∈ F [G] and g ∈ G. Let M be a finitely generated left F [G]-module where F [G] is the group algebra.

(a) Show that F [G] is isomorphic to the ring

FG =

∑
g∈G

λgg λg ∈ F

 ,

with addition given by ∑
g∈G

λgg

+

∑
g∈G

µgg

 =
∑
g∈G

(λg + µg)g

with 0FG =
∑

g∈G 0g and multiplication given by∑
g∈G

λgg

∑
g∈G

µgg

 =
∑
g∈G

 ∑
g1g2=g∈G

λg1µg2

 g,

with 1FG = e = eg. Conclude that F [G] is a finite-dimensional vector space over F . Use this description
of F [G] for the rest of the problem.

(b) Show that M is a finite-dimensional vector space over F .

(c) Show that M is a left artinian F [G]-module. Conclude that either M = 0 or M has a simple submodule.

(d) Let f ∈ EndF (M). Define f̃ : M → M via

f̃(m) =
1

|G|
∑
g∈G

gf(g−1m).

Show that f̃ ∈ EndF [G](M).
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(e) Assume that there exists a simple submodule S ⊆ M . In particular, S is a subspace of M and so there
exists a subspace N ⊆ M such that M = S ⊕N (as vector spaces). Let π : M → S and ι : S → M be
the canonical projection and inclusion maps. Show that if f = ι ◦ π, then Im f̃ = S and f̃2 = f̃ .

(f) Show that there if there exists a simple submodule S ⊆ M , then there is an isomorphism of left F [G]-
modules

M ∼= Im f̃ ⊕ Im(1M − f̃).

Conclude that every finitely generated F [G]-module is semisimple.
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