

Department of Mathematical Sciences

Examination paper for MA3201 Rings and modules

Academic contact during examination: Sverre O. Smalø Phone: 48293975/48293975

Examination date: 24th of November 2020 Examination time (from-to): 09:00–13:00 Permitted examination support material: Everything written

Language: English Number of pages: 2 Number of pages enclosed: 0

 Informasjon om trykking av eksamensoppgave

 Originalen er:

 1-sidig
 ⊠

 2-sidig
 □

 sort/hvit
 ⊠

 farger
 □

 skal ha flervalgskjema
 □

Checked by:

Date

Signature

Problem 1

- **a)** Find the Smith normal form of the matrix $\begin{pmatrix} X-7 & -2 & 12 \\ -4 & X-5 & 12 \\ -2 & 1 & X+3 \end{pmatrix}$ over $\mathbb{C}[X]$.
- **b)** Find the rational normal form and the Jordan canonical form of the matrix $\begin{pmatrix} 7 & 2 & -12 \\ 4 & 5 & -12 \\ 2 & 1 & -3 \end{pmatrix}$ over \mathbb{C} .

Problem 2 Let

$$\Lambda_1 = \left\{ \begin{pmatrix} a & b & c & d \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a \end{pmatrix} \mid a, b, c, d \in \mathbb{Q} \right\}$$

and

$$\Lambda_{2} = \{ \begin{pmatrix} a & b & c & d \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a \end{pmatrix} \mid a, b, c, d \in \mathbb{Z}_{2} \}.$$

- a) Prove that Λ_1 and Λ_2 are subrings of the full matrix ring over \mathbb{Q} and \mathbb{Z}_2 respectively, and that Λ_1 has no nilpotent elements.
- **b)** Prove that the map $\Phi_1 \colon \Lambda_1 \to \mathbb{Q}$ given by

$$\Phi_1(\begin{pmatrix} a & b & c & d \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a \end{pmatrix}) = a + b + c + d$$

is a ring homomorphism, and that $\Phi_2 \colon \Lambda_2 \to \mathbb{Z}_2$ given by

$$\Phi_{2}\begin{pmatrix} a & b & c & d \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a \end{pmatrix} = a + b + c + d$$

is a ring homomorphism.

- c) Find a \mathbb{Q} basis for the kernel of Φ_1 and a \mathbb{Z}_2 basis for the kernel of Φ_2 . Show that the kernel of Φ_2 is nilpotent.
- d) Prove that $\Psi_1 \colon \Lambda_1 \to \mathbb{Q} \times \mathbb{Q}$ given by

$$\Psi_1(\begin{pmatrix} a & b & c & d \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a \end{pmatrix} = (a + b - c - d, a - b + c - d)$$

is a surjective ringhomomorphism, and find a ring isomorphism

$$\Psi_2\colon \Lambda_1 \to \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$$

Problem 3 Let *i* be a complex number such that $i^2 = -1$ and consider the abelian subgroup $A_2 = \{e^{\frac{l2\pi i}{2^k}} \mid k, l \in \mathbb{N}\}$ of the nonzero complex numbers under multiplication.

- a) Prove that for each natural number k, the group A_2 containes one and only one subgroup of order 2^k , and that each cylic subgroup of A_2 has order 2^k for some natural number k.
- b) Prove that A_2 is not noetherian as an abelian group. Prove that each proper subgroup of A_2 is finite, and conclude that A_2 is artinian.
- c) Prove that every nonzero group homomorphism $\phi: A_2 \to A_2$ is surjective and show that the ring of abelian group endomorphisms of A_2 is an integral domain. (It is also commutative, but you need not prove that)

Problem 4

Prove that if Λ is a ring and M is an artin Λ -module, then every injective Λ -homomorphism $f: M \to M$ is an isomorphism.