- NTNU

Norwegian University of
Science and Technology

Department of Mathematical Sciences

Examination paper for MA3201 Rings and Modules

Academic contact during examination: Peder Thompson
Phone: 96840038

Examination date: November 28th, 2018
Examination time (from-to): 09:00-13:00
Permitted examination support material: D: No printed or hand-written support material is allowed. A simple calculator is allowed.

Other information:

- All answers have to be justified, and they should include enough details in order to see how they have been obtained.
- All sub-problems carry the same weight for grading.
- Assume all rings have unity (all rings have a 1).
- \mathbb{Z} denotes the ring of integers; \mathbb{R} denotes the field of real numbers.

Language: English
Number of pages: 1
Number of pages enclosed: 0

Checked by:

Informasjon om trykking av eksamensoppgave
Originalen er:
1-sidig \square 2-sidig \boxtimes
sort/hvit $\boxtimes \quad$ fargerDate
Signature
skal ha flervalgskjema

Notes: All rings have unity (all rings have a 1). \mathbb{Z} denotes the ring of integers; \mathbb{R} denotes the field of real numbers. All answers must be justified. Each sub-problem is worth the same for grading.

Problem 1. Let R be a ring.
(a) Let M and N be R-modules and let $f: M \rightarrow N$ be an R-module homomorphism. Prove that $\operatorname{ker}(f)$ is an R-submodule of M.
(b) Let M and N be simple R-modules. If $f: M \rightarrow N$ is a nonzero R-module homomorphism, prove that f is an isomorphism.
(c) Let R be a nonzero commutative ring. If M is a maximal ideal of R, prove that M is a prime ideal.

Problem 2.

(a) Prove that $\mathbb{Z} / 6 \mathbb{Z}$ is isomorphic (as a ring) to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$.
(b) Show that $\mathbb{Z} / 6 \mathbb{Z}$ is a free $\mathbb{Z} / 6 \mathbb{Z}$-module but is not a free \mathbb{Z}-module.

Problem 3.

(a) Prove that \mathbb{Z} is noetherian but is not artinian.
(b) Prove that $\mathbb{R}[x]$ is noetherian.
(c) Consider the rings $R_{1}=\left[\begin{array}{cc}\mathbb{R} & \mathbb{R} \\ 0 & \mathbb{R}\end{array}\right]$ and $R_{2}=\left[\begin{array}{cc}\mathbb{R} & 0 \\ 0 & \mathbb{R}\end{array}\right]$. Determine whether each of these rings is semisimple (and prove your answer).

Problem 4.

(a) Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 4 \\ 1 & 4 & 1\end{array}\right]$. Find the Smith normal form of A over \mathbb{Z}.
(b) Let B be a 6×6 matrix over $\mathbb{R}[x]$ with invariant factors $f_{1}(x)=x+1$, $f_{2}(x)=(x+1)(x+3)$, and $f_{3}(x)=(x+1)(x+3)^{2}$. Give the rational canonical form of B.

