

Department of Mathematical Sciences

Examination paper for MA3201 Rings and Modules

Academic contact during examination: Peder Thompson

Phone: 96 84 00 38

Examination date: November 28th, 2018

Examination time (from-to): 09:00 - 13:00

Permitted examination support material: D: No printed or hand-written support material is allowed. A simple calculator is allowed.

Other information:

- All answers have to be justified, and they should include enough details in order to see how they have been obtained.
- All sub-problems carry the same weight for grading.
- Assume all rings have unity (all rings have a 1).
- \mathbb{Z} denotes the ring of integers; \mathbb{R} denotes the field of real numbers.

Language: English Number of pages: 1

Number of pages enclosed: 0

Informasjon om trykking av eksamensoppgave			
Originalen er:			
1-sidig		2-sidig	\boxtimes
sort/hvit	\boxtimes	farger	
skal ha flervalgskjema 🛛			

Checked by:

Date

Signature

Notes: All rings have unity (all rings have a 1). \mathbb{Z} denotes the ring of integers; \mathbb{R} denotes the field of real numbers. All answers must be justified. Each sub-problem is worth the same for grading.

Problem 1. Let R be a ring.

- (a) Let M and N be R-modules and let $f : M \to N$ be an R-module homomorphism. Prove that ker(f) is an R-submodule of M.
- (b) Let M and N be simple R-modules. If $f : M \to N$ is a nonzero R-module homomorphism, prove that f is an isomorphism.
- (c) Let R be a nonzero commutative ring. If M is a maximal ideal of R, prove that M is a prime ideal.

Problem 2.

- (a) Prove that $\mathbb{Z}/6\mathbb{Z}$ is isomorphic (as a ring) to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.
- (b) Show that $\mathbb{Z}/6\mathbb{Z}$ is a free $\mathbb{Z}/6\mathbb{Z}$ -module but is not a free \mathbb{Z} -module.

Problem 3.

- (a) Prove that \mathbb{Z} is not herian but is not artinian.
- (b) Prove that $\mathbb{R}[x]$ is noetherian.
- (c) Consider the rings $R_1 = \begin{bmatrix} \mathbb{R} & \mathbb{R} \\ 0 & \mathbb{R} \end{bmatrix}$ and $R_2 = \begin{bmatrix} \mathbb{R} & 0 \\ 0 & \mathbb{R} \end{bmatrix}$. Determine whether each of these rings is semisimple (and prove your answer).

Problem 4.

(a) Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 1 & 4 & 1 \end{bmatrix}$$
. Find the Smith normal form of A over \mathbb{Z} .

(b) Let B be a 6×6 matrix over $\mathbb{R}[x]$ with invariant factors $f_1(x) = x + 1$, $f_2(x) = (x+1)(x+3)$, and $f_3(x) = (x+1)(x+3)^2$. Give the rational canonical form of B.