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Problem 1

a) Find the Smith normal form of the matrix

11 1 1 1

12 4 8 16
13 9 27 &1
1 4 16 64 256
1 5 25 125 625

over Z.

Problem 2 Let Ms(Z) be the ring of 2 x 2 matrices over Z, i.e.

MQ(Z) = {<(le Zz) | a17a27b1ab27 € Z})

with the usual matrix addition and multiplication, and let Ms(Z,,) be the ring of
2 X 2 matrices over Z,, i.e.

MQ(ZTL) - { ar a2 | a1, ag, bla b27 € ZTL}7
br by
with the usual matrix addition and multiplication modulo n.
a) Prove that for each n € Z\ {0}, the map ®,, : My(Z) — Ms(Z,,), given by
q)(al ag)_ ap modn ay; modn
"\\by by)’ \b; modn by, modn)’
is a surjective ring homomorphism and find the kernel of ®,,.

b) Let n = st with s, t € Z\ {0,1,—1}, and prove that ®,; : My(Z) —
My(Zs) x My(Zy) given by

ap az\, a; as a1 Qg
oul( i h =@ (i 52
is a ring homomorphism and find its kernel.

c) When will &,,, as defined in part b), be surjective? You have to give a
reason for your answer.

d) For which n will the ring M3(Z,) be semi-simple? You have to give a reason
for your answer.
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Problem 3 Let R be the subset of the ring of 2 x 2 matrices over Z given as
10 0 —1
{a(o 1>—|—b<1 _1>\a,b€Z}

a) Show that R is a commutative ring which is an integral domain, and find
the group of units in R. Hint: Observe that the second matrix satisfy the
polynomial X2 + X + 1 or use determinants.

b) Find the ideal generated by the element (2

0 g) and show that R/ (2 O) R

0 2
is a field with 4 elements.

c) Show that the ring R/ (g g) R is not semisimple. Hint: Try to find a

nonzero nilpotent element.

Problem 4
a) Prove that every nonzero finitely generated Z-submodule of Q is a free Z-
module on one generator. Hint: Show that a submodule generated by two

elements, is in fact generated by one element.

b) Prove that Q is not noetherian as a Z-module.



