Norwegian University of
Science and Technology

Department of Mathematical Sciences

Examination paper for MA3201 Rings and Modules

Academic contact during examination: Sverre O. Smalø
Phone: 48293975

Examination date: 18. December 2017
Examination time (from-to): 09:00-13:00
Permitted examination support material: B: Simple calculator.

Language: English
Number of pages: 2
Number of pages enclosed: 0

Checked by:

```
Informasjon om trykking av eksamensoppgave
Originalen er:
```

1-sidig2-sidig \boxtimes sort/hvit $\boxtimes \quad$ farger \square skal ha flervalgskjema

Date
Signature

Problem 1

a) Find the Smith normal form of the matrix

$$
\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 & 16 \\
1 & 3 & 9 & 27 & 81 \\
1 & 4 & 16 & 64 & 256 \\
1 & 5 & 25 & 125 & 625
\end{array}\right)
$$

over \mathbb{Z}.

Problem 2 Let $M_{2}(\mathbb{Z})$ be the ring of 2×2 matrices over \mathbb{Z}, i.e.

$$
M_{2}(\mathbb{Z})=\left\{\left.\left(\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right) \right\rvert\, a_{1}, a_{2}, b_{1}, b_{2}, \in \mathbb{Z}\right\}
$$

with the usual matrix addition and multiplication, and let $M_{2}\left(\mathbb{Z}_{n}\right)$ be the ring of 2×2 matrices over \mathbb{Z}_{n}, i.e.

$$
M_{2}\left(\mathbb{Z}_{n}\right)=\left\{\left.\left(\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right) \right\rvert\, a_{1}, a_{2}, b_{1}, b_{2}, \in \mathbb{Z}_{n}\right\}
$$

with the usual matrix addition and multiplication modulo n.
a) Prove that for each $n \in \mathbb{Z} \backslash\{0\}$, the map $\Phi_{n}: M_{2}(\mathbb{Z}) \rightarrow M_{2}\left(\mathbb{Z}_{n}\right)$, given by

$$
\Phi_{n}\left(\left(\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right)\right)=\left(\begin{array}{ccc}
a_{1} & \bmod n & a_{2}
\end{array} \bmod n\right)
$$

is a surjective ring homomorphism and find the kernel of Φ_{n}.
b) Let $n=s t$ with $s, t \in \mathbb{Z} \backslash\{0,1,-1\}$, and prove that $\Phi_{s, t}: M_{2}(\mathbb{Z}) \rightarrow$ $M_{2}\left(\mathbb{Z}_{s}\right) \times M_{2}\left(\mathbb{Z}_{t}\right)$ given by

$$
\left.\Phi_{s, t}\left(\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right)\right)=\left(\Phi_{s}\left(\left(\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right)\right), \Phi_{t}\left(\left(\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right)\right)\right),
$$

is a ring homomorphism and find its kernel.
c) When will $\Phi_{s, t}$, as defined in part b), be surjective? You have to give a reason for your answer.
d) For which n will the ring $M_{2}\left(\mathbb{Z}_{n}\right)$ be semi-simple? You have to give a reason for your answer.

Problem 3 Let R be the subset of the ring of 2×2 matrices over \mathbb{Z} given as

$$
\left\{\left.a\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+b\left(\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right) \right\rvert\, a, b \in \mathbb{Z}\right\}
$$

a) Show that R is a commutative ring which is an integral domain, and find the group of units in R. Hint: Observe that the second matrix satisfy the polynomial $X^{2}+X+1$ or use determinants.
b) Find the ideal generated by the element $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ and show that $R /\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right) R$ is a field with 4 elements.
c) Show that the ring $R /\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right) R$ is not semisimple. Hint: Try to find a nonzero nilpotent element.

Problem 4

a) Prove that every nonzero finitely generated \mathbb{Z}-submodule of \mathbb{Q} is a free \mathbb{Z} module on one generator. Hint: Show that a submodule generated by two elements, is in fact generated by one element.
b) Prove that \mathbb{Q} is not noetherian as a \mathbb{Z}-module.

