NTNU - Trondheim Norwegian University of Science and Technology

Department of Mathematical Sciences

Examination paper for MA3201 Rings and Modules

Academic contact during examination: Sverre O. Smalø
Phone: 73591750

Examination date: December 15th 2015
Examination time (from-to): 09:00-13:00
Permitted examination support material: B: Simple Calculator.

Language: English
Number of pages: 2
Number pages enclosed: 0

Problem 1

a) Find the Smith normal form of the matrix

$$
\left(\begin{array}{ccc}
2-X & 1 & 2 \\
0 & 1-X & 2 \\
1 & 0 & 1-X
\end{array}\right)
$$

over $\mathbb{Z}_{5}[X]$.
b) Find the rational canonical form of the matrix $A=\left(\begin{array}{lll}2 & 1 & 2 \\ 0 & 1 & 2 \\ 1 & 0 & 1\end{array}\right)$ over \mathbb{Z}_{5}.
c) Let $M_{3}\left(\mathbb{Z}_{5}\right)$ be the ring of 3×3 matrices over \mathbb{Z}_{5} and define $\Phi_{A}: \mathbb{Z}_{5}[X] \rightarrow$ $M_{3}\left(\mathbb{Z}_{5}\right)$ by letting $\Phi_{A}(P)=P(A)$ for each polynomial P in $\mathbb{Z}_{5}[X]$. The Image of Φ_{A} is then the subring of $M_{3}\left(\mathbb{Z}_{5}\right)$ generated by the matrix A. Prove that this subring generated by the matrix A is not a field.

Problem $2 \quad$ Let $\Lambda=\left\{\left.\left(\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z}_{6}\right\} \subset M_{3}\left(\mathbb{Z}_{6}\right)$, the ring of 3×3 matrices over \mathbb{Z}_{6}.
a) Prove that Λ is a commutative subring of $M_{3}\left(\mathbb{Z}_{6}\right)$, the ring of 3×3 matrices over \mathbb{Z}_{6}.
b) Define $\Psi: \Lambda \rightarrow \mathbb{Z}_{6}$ by $\Psi\left(\left(\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right)\right)=a+b+c$. Prove that Ψ is a surjective ring homomorphism and find a set of generators for the kernel of Ψ.
c) How many maximal ideals in Λ contain the kernel of Ψ ? You have to give an argument for your answer.
d) Is Λ a semisimpel ring? You have to give an argument for your answer.

Problem 3 Let R be a ring and A and C left submodules of the left R-module B, i.e. $A \subseteq B$ and $C \subseteq B$.
a) Prove that the submodule $A+C$ of B is finitely generated if A and C are finitely generated
b) Prove that if A, C and $B /(A+C)$ are all finitely generated, the B is also finitely generated.
c) Prove that B is artinian if and only if A, C and $B /(A+C)$ are all artinian.

