

Department of Mathematical Sciences

Examination paper for MA3201 Rings and Modules

Academic contact during examination: Sverre O. Smalø Phone: 73591750

Examination date: December 15th 2015 Examination time (from-to): 09:00–13:00 Permitted examination support material: B: Simple Calculator.

Language: English Number of pages: 2 Number pages enclosed: 0

Checked by:

Problem 1

a) Find the Smith normal form of the matrix

$$\begin{pmatrix} 2-X & 1 & 2\\ 0 & 1-X & 2\\ 1 & 0 & 1-X \end{pmatrix}$$

over $\mathbb{Z}_5[X]$.

- **b)** Find the rational canonical form of the matrix $A = \begin{pmatrix} 2 & 1 & 2 \\ 0 & 1 & 2 \\ 1 & 0 & 1 \end{pmatrix}$ over \mathbb{Z}_5 .
- c) Let $M_3(\mathbb{Z}_5)$ be the ring of 3×3 matrices over \mathbb{Z}_5 and define $\Phi_A : \mathbb{Z}_5[X] \to$ $M_3(\mathbb{Z}_5)$ by letting $\Phi_A(P) = P(A)$ for each polynomial P in $\mathbb{Z}_5[X]$. The Image of Φ_A is then the subring of $M_3(\mathbb{Z}_5)$ generated by the matrix A. Prove that this subring generated by the matrix A is not a field.

Problem 2 Let
$$\Lambda = \{ \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix} \mid a, b, c \in \mathbb{Z}_6 \} \subset M_3(\mathbb{Z}_6)$$
, the ring of 3×3

matrices over \mathbb{Z}_6 .

- a) Prove that Λ is a commutative subring of $M_3(\mathbb{Z}_6)$, the ring of 3×3 matrices over \mathbb{Z}_6 .
- **b)** Define $\Psi : \Lambda \to \mathbb{Z}_6$ by $\Psi(\begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}) = a + b + c$. Prove that Ψ is a surjective ring homomorphism and find a set of generators for the kernel of Ψ .
- c) How many maximal ideals in Λ contain the kernel of Ψ ? You have to give an argument for your answer.
- d) Is Λ a semisimpel ring? You have to give an argument for your answer.

Problem 3 Let *R* be a ring and *A* and *C* left submodules of the left *R*-module *B*, i.e. $A \subseteq B$ and $C \subseteq B$.

- **a)** Prove that the submodule A + C of B is finitely generated if A and C are finitely generated.
- b) Prove that if A, C and B/(A+C) are all finitely generated, the B is also finitely generated.
- c) Prove that B is artinian if and only if A, C and B/(A+C) are all artinian.