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Problem 1

Let F be a field, and let R =

















a b c
0 d e
0 0 f





 : a, b, c, d, e, f ∈ F











.

a) Show that R is a subring of the ring M3(F) of 3 × 3 matrices over F.

Let A =







a b c
0 d e
0 0 f





, A′ =







a′ b′ c′

0 d′ e′

0 0 f ′





 be elements of R. Then

AA′ =







a b c
0 d e
0 0 f













a′ b′ c′

0 d′ e′

0 0 f ′





 =







aa′ ab′ + bd′ ac′ + be′ + cf ′

0 dd′ de′ + ef ′

0 0 ff ′





 ∈ R

and

A − A′ =







a b c
0 d e
0 0 f





−







a′ b′ c′

0 d′ e′

0 0 f ′





 =







a − a′ b − b′ c − c′

0 d − d′ e − e′

0 0 f − f ′





 ∈ R.

Also

1M3(F) =







1 0 0
0 1 0
0 0 1





 ∈ R.

Hence R is a subring of M3(F).

Show that I1 =

















0 b c
0 0 0
0 0 0





 : b, c ∈ F











is an ideal of R.

Let A =







a b c
0 d e
0 0 f






∈ R and X =







0 p q
0 0 0
0 0 0






, X ′ =







0 p′ q′

0 0 0
0 0 0






∈ I1. Then

X − X ′ =







0 p q
0 0 0
0 0 0






−







0 p′ q′

0 0 0
0 0 0






=







0 p − p′ q − q′

0 0 0
0 0 0






∈ I1,

AX =







a b c
0 d e
0 0 f













0 p q
0 0 0
0 0 0





 =







0 ap aq
0 0 0
0 0 0





 ∈ I1



Page 2 of 10 MA3201 Rings and Modules 17 December 2014

and

XA =







0 p q
0 0 0
0 0 0













a b c
0 d e
0 0 f






=







0 pd pe + qf
0 0 0
0 0 0






∈ I1.

Note that I1 is also nonempty. Hence, I1 is an ideal of R.

b) Show that I1 is nilpotent.

Let X =







0 p q
0 0 0
0 0 0





 , Y =







0 p′ q′

0 0 0
0 0 0





 ∈ I1. Then

XY =







0 p q
0 0 0
0 0 0













0 p′ q′

0 0 0
0 0 0





 =







0 0 0
0 0 0
0 0 0





 .

It follows that I2
1 = 0, so I1 is nilpotent.

Determine whether or not R is a semisimple ring and whether or not R is
a left artinian ring.

We see that R has a nonzero nilpotent ideal, I1. By the Wedderburn-Artin
theorem, a ring is semisimple if and only if it has no nonzero nilpotent ideals
and is left artinian. Hence R is not semisimple.

The ring R is an F-algebra with basis as F-vector space given by the elemen-
tary matrices E11, E12, E13, E22, E23, E33. Hence it is a finite-dimensional
F-algebra and therefore left artinian.

c) Let I2 =

















0 b c
0 d e
0 0 0





 : b, c, d, e ∈ F











. You may assume that I2 is an ideal

of R.

Determine whether or not R/I2 is a semisimple ring and whether or not
R/I2 is a left artinian ring.

Define ϕ : R → F×F by setting

ϕ













a b c
0 d e
0 0 f












= (a, f).
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Then

ϕ













a b c
0 d e
0 0 f













a′ b′ c′

0 d′ e′

0 0 f ′












= ϕ













aa′ ab′ + bd′ ac′ + be′ + cf ′

0 dd′ de′ + ef ′

0 0 ff ′












= (aa′, ff ′),

while

ϕ













a b c
0 d e
0 0 f












ϕ













a′ b′ c′

0 d′ e′

0 0 f ′












= (a, f)(a′, f ′) = (aa′, ff ′).

So

ϕ













a b c
0 d e
0 0 f













a′ b′ c′

0 d′ e′

0 0 f ′












= ϕ













a b c
0 d e
0 0 f












ϕ













a′ b′ c′

0 d′ e′

0 0 f ′












.

We also have:

ϕ













a b c
0 d e
0 0 f





+







a′ b′ c′

0 d′ e′

0 0 f ′











 = ϕ













a + a′ b + b′ c + c′

0 d + d′ e + e′

0 0 f + f ′











 = (a+a′, f+f ′),

while

ϕ













a b c
0 d e
0 0 f











+ ϕ













a′ b′ c′

0 d′ e′

0 0 f ′











 = (a, f) + (a′, f ′) = (a + a′, f + f ′).

So

ϕ













a b c
0 d e
0 0 f





+







a′ b′ c′

0 d′ e′

0 0 f ′











 = ϕ













a b c
0 d e
0 0 f











+ ϕ













a′ b′ c′

0 d′ e′

0 0 f ′











 .

Since also ϕ(1R) = (1, 1) = 1F×F, we see that ϕ is a ring homomorphism.

We see easily that the kernel is I2, and the image is F×F, so by the Funda-
mental Theorem of Homomorphisms,

R

I2

∼= F×F .

Since F ∼= M1(F) and any field is a division ring, the ring F×F is isomor-
phic to a finite direct product of matrix rings over division rings, and hence
is a semisimple ring (see the Wedderburn-Artin Theorem). Again by the
Wedderburn-Artin theorem, F×F is a left artinian ring.
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d) Is I2 a maximal ideal of R? If not, find the maximal ideals of R containing
I2.

The ideals of F×F are J1 ×J2 where J1, J2 are ideals of F, i.e. where J1, J2 ∈
{{0},F}. By the Correspondence Theorem, the ideals of R containing I2 are
the preimages of these under ϕ, i.e. I2, R and the ideals:

K1 =

















a b c
0 d e
0 0 0





 : a, b, c, d, e ∈ F











,

K2 =

















0 b c
0 d e
0 0 f





 : b, c, d, e, f ∈ F











.

In particular, each of K1 and K2 strictly contains I2 and is strictly contained
in R. So I2 is not a maximal ideal. Since these are all the ideals containing
I2 in R, we see that K1 and K2 are the maximal ideals of R containing I2.

Problem 2

Let R be a ring and M an R-module. Prove that M is cyclic if and only if
M ∼= RR/I for a left ideal I of R.

Suppose that M is a cyclic R-module, so M = Rm for some m ∈ M . Define a
map ϕ : RR → M by setting ϕ(r) = rm for r ∈ R. Then, for r, r′ ∈ R:

ϕ(r + r′) = (r + r′)m = rm + r′m = ϕ(r) + ϕ(r′)

and, for r, s ∈ R:
ϕ(sr) = (sr)m = s(rm) = sϕ(r),

so ϕ is an R-homomorphism. Since M = Rm, ϕ is onto, i.e. im(ϕ) = M . The
kernel I = ker(ϕ) is an R-submodule of RR, hence a left ideal of R. Then, by the
Fundamental Theorem of Homomorphisms,

RR/ ker(ϕ) ∼= im(ϕ) = M.

Conversely, let I be a left ideal in R. Then I is a left R-submodule of RR, so we
may consider the quotient module

RR/I = {r + I : r ∈ R}.
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We can write this as

RR/I = {r(1 + I) : r ∈ R},

and we see that RR/I is a cyclic R-module. Hence any module isomorphic to RR/I
is a cyclic R-module, as required.

Problem 3

a) Find the Smith normal form of the matrix







4 4 4
2 4 3
4 4 2





 over Z.

We apply row and column operations to reduce the matrix to Smith Normal
Form:







4 4 4
2 4 3
4 4 2





 −→
R1↔R2







2 4 3
4 4 4
4 4 2







C2−2C1−→
C3−C1







2 0 1
4 −4 0
4 −4 −2





 −→
C1↔C3







1 0 2
0 −4 4

−2 −4 4





 −→
C3−2C1







1 0 0
0 −4 4

−2 −4 8





 −→
R3+2R1







1 0 0
0 −4 4
0 −4 8





 −→
C3+C2







1 0 0
0 −4 0
0 −4 4






−→

R3−R2







1 0 0
0 −4 0
0 0 4






−→

(−1)R2







1 0 0
0 4 0
0 0 4






.

b) Let A be an n×n matrix over a field F. State without proof how the char-
acteristic polynomial of A and the minimum polynomial of A are related
to the invariant factors of A − xI over F[x].

The last invariant factor (i.e. the n, n entry of the Smith Normal Form of
A − xIn), if taken to be monic, is equal to the minimum polynomial of A.
The product of the nonunit invariant factors of A − xIn (taken to be monic)
is equal to (−1)n times the characteristic polynomial of A.

Let A be a 6 × 6 matrix over Q with minimum polynomial (x2 − 3x + 2)2.
Find the possibilities for the invariant factors of A − xI over Q[x] and
compute the rational canonical form of A in one of the cases.

The nonunit invariant factors of A − xI6 must all divide the minimum poly-
nomial (x2 −3x+ 2)2 = (x−1)2(x−2)2, and their product must have degree
6. Each must divide the next. The unit invariant factors can all be taken to
be 1. So the possibilities are as listed below.
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We have (x−1)2 = x2−2x+1, (x−2)2 = x2−4x+4, (x−1)(x−2) = x2−3x+2
and:

(x − 1)2(x − 2)2 = (x2 − 2x + 1)(x2 − 4x + 4)

= x4 − 6x3 + 13x2 − 12x + 4.

The corresponding rational canonical forms are obtained by taking 2 × 2
block matrices with zero blocks off the diagonal and the companion matrices
of the nonunit monic invariant factors of A − xIn on the diagonal (note only
one was asked for).

1, 1, 1, 1, (x − 1)2, (x − 1)2(x − 2)2,





















0 −1 0 0 0 0
1 2 0 0 0 0
0 0 0 0 0 −4
0 0 1 0 0 12
0 0 0 1 0 −13
0 0 0 0 1 6





















1, 1, 1, 1, (x − 1)(x − 2), (x − 1)2(x − 2)2,





















0 −2 0 0 0 0
1 3 0 0 0 0
0 0 0 0 0 −4
0 0 1 0 0 12
0 0 0 1 0 −13
0 0 0 0 1 6





















1, 1, 1, 1, (x − 2)2, (x − 1)2(x − 2)2,





















0 −4 0 0 0 0
1 4 0 0 0 0
0 0 0 0 0 −4
0 0 1 0 0 12
0 0 0 1 0 −13
0 0 0 0 1 6





















1, 1, 1, (x − 1), (x − 1), (x − 1)2(x − 2)2,





















1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 −4
0 0 1 0 0 12
0 0 0 1 0 −13
0 0 0 0 1 6




















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1, 1, 1, (x − 2), (x − 2), (x − 1)2(x − 2)2,





















2 0 0 0 0 0
0 2 0 0 0 0
0 0 0 0 0 −4
0 0 1 0 0 12
0 0 0 1 0 −13
0 0 0 0 1 6





















Problem 4

Let R be a ring and let M and N be R-modules.

a) Let ϕ : M → N be an R-homomorphism. Give the definition of the kernel
of ϕ and show that it is a submodule of M .

The kernel of ϕ is:

ker ϕ = {m ∈ M : ϕ(m) = 0N}.

We have ϕ(0M) = 0N , so ker ϕ is nonempty. Let m1, m2 ∈ ker ϕ. Then
ϕ(m1) = ϕ(m2) = 0N . We have

ϕ(m1 − m2) = ϕ(m1) − ϕ(m2) = 0N − 0N = 0N ,

so m1 − m2 ∈ ker ϕ. Hence ker ϕ is a subgroup of M . For r ∈ R and
m ∈ ker ϕ, we have

ϕ(rm) = rϕ(m) = r0N = 0N ,

so rm ∈ ker ϕ. Hence ker ϕ is a submodule of M .

Show that if ϕ has an inverse ϕ−1 : N → M then ϕ−1 is an R-
homomorphism.

Let r ∈ R and n ∈ N . Then ϕ(ϕ−1(rn)) = rn and ϕ(rϕ−1(n)) = rϕ(ϕ−1(n)) =
rn, so ϕ−1(rn) = rϕ−1(n), as ϕ is injective.

Let n1, n2 ∈ N . Then

ϕ(ϕ−1(n1 + n2)) = n1 + n2

and

ϕ(ϕ−1(n1) + ϕ−1(n2)) = ϕ(ϕ−1(n1)) + ϕ(ϕ−1(n2)) = n1 + n2,
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so
ϕ−1(n1 + n2) = ϕ−1(n1) + ϕ−1(n2),

as ϕ is injective.

Hence ϕ−1 is an R-homomorphism from N to M .

b) Suppose that M and N are simple R-modules. Prove that any R-
homomorphism ϕ from M to N is either zero or an isomorphism.

Let M and N be simple R-modules and ϕ : M → N an R-homomorphism.
Then M is nonzero and its only submodules are {0M} and M . Similarly,
N is nonzero and its only submodules are {0N} and N . Since ker ϕ is a
submodule of M and M is simple, we have that ker ϕ = {0M} or M . Since
im ϕ is a submodule of N and N is simple, we have that im ϕ = {0N} or N .

If ker ϕ = M or im ϕ = {0N} then ϕ is the map sending every element of M
to zero. The only remaining possibility is that ker ϕ = {0M} and im ϕ = N .
But then ϕ is injective and surjective, hence an isomorphism.

Let EndR(M) be the ring of R-homomorphisms from M to M . Prove that
EndR(M) is a division ring.

If M = N , then, by the above, every nonzero R-homomorphism ϕ from M to
M is an isomorphism and therefore (by part (a)) has an inverse in EndR(M).
Since M is non-zero, the identity map from M to M is not the zero map.
Therefore EndR(M) is a division ring.

c) Let n be a positive integer. Show that there is a ring isomorphism

Z

nZ
∼= EndZ

(

Z

nZ

)

.

For x ∈ Z, write x for the corresponding element of Z
nZ

. We define a map

f : Z → EndZ

(

Z

nZ

)

.

Given a ∈ Z, let f(a) : Z
nZ

→ Z
nZ

be the map taking x to ax. Then, for
x, y ∈ Z

nZ
, f(a)(x+y) = a(x+y) = ax+ay = f(a)(x)+f(a)(y). For x ∈ Z

nZ

and r ∈ Z,

f(a)(rx) = a(rx) = (ar)x = (ra)x = r(ax) = rf(a)(x).
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Hence f(a) ∈ EndZ( Z
nZ

).

For a, b ∈ Z and x ∈ Z

nZ
, we have

f(a + b)(x) = (a + b)x = ax + bx = f(a)(x) + f(b)(x),

so f(a + b) = f(a) + f(b). And

f(ab)(x) = (ab)x = a(bx) = f(a)(f(b)(x)) = (f(a)f(b))(x).

So f(ab) = f(a)f(b). Also, f(1)(x) = 1x = Id(x), where Id is the identity
element of EndZ( Z

nZ
). So f is a ring homomorphism.

Let a ∈ Z. Then f(a) is the zero endomorphism of Z
nZ

if and only if f(a)(1) =
0, if and only if a = 0 in Z

nZ
, if and only if a ∈ nZ. So the kernel of f is nZ.

Let ϕ ∈ EndZ( Z
nZ

). Then

ϕ(x) = ϕ(x1) = ϕ(x1) = xϕ(1) = ϕ(1)x

for all x ∈ Z. So ϕ = f(m), where m ∈ Z is any element such that m = ϕ(1).
Hence f is onto. Applying the Fundamental theorem of ring homomorphisms,
we obtain a ring isomorphism:

f :
Z

nZ
∼= EndZ

(

Z

nZ

)

,

as required. Note that f(a) is the map taking x to ax.

Prove that there is exactly one such ring isomorphism.

Let

f ′ :
Z

nZ
→ EndZ

(

Z

nZ

)

be an arbitrary ring isomorphism. Then f ′(1) is the identity map Id on Z
nZ

.
Let 0 ≤ a ≤ n − 1. Then

f ′(a) = f ′(1 + 1 + · · · + 1)

= f ′(1) + f ′(1) + · · · + f ′(1)

(with a terms). So f ′(a) = a Id, i.e. it is the map sending x to ax = ax.
Hence f ′ = f .

Prove that if n is not a prime number, then Z /nZ is not a simple Z-
module.
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Suppose that n is a positive integer which is not a prime number. If n = 1
then Z /nZ is the zero module, hence not simple. If n > 1 then it can be
written in the form n = ab where 1 < a, b < n are integers. Then, regarding
a, b as elements of Z /nZ, we have ab = 0 in Z /nZ. So if a had an inverse
a−1, we’d have a−1ab = 0, and therefore b = 0 in Z /nZ, a contradiction
(as 1 < b < n). Hence Z /nZ is not a division ring, as a '= 0 in Z /nZ.
Therefore, by part (b) (Schur’s Lemma), Z /nZ is not a simple Z-module.


