NTNU - Trondheim Norwegian University of Science and Technology

Department of Mathematical Sciences

Examination paper for MA3201 Rings and Modules

Academic contact during examination: Robert Marsh
Phone: 90845362

Examination date: 17 December 2014
Examination time (from-to): 09:00-13:00
Permitted examination support material: D: No printed or hand-written support material is allowed. A specific basic calculator is allowed.

Other information:

Language: English
Number of pages: 2
Number pages enclosed: 0

Checked by:

- All answers should be justified and properly explained.
- All rings have a multiplicative identity.

Problem $1 \quad$ Let \mathbb{F} be a field, and let $R=\left\{\left(\begin{array}{ccc}a & b & c \\ 0 & d & e \\ 0 & 0 & f\end{array}\right): a, b, c, d, e, f \in \mathbb{F}\right\}$.
a) Show that R is a subring of the ring $M_{3}(\mathbb{F})$ of 3×3 matrices over \mathbb{F}. Show that $I_{1}=\left\{\left(\begin{array}{lll}0 & b & c \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right): b, c \in \mathbb{F}\right\}$ is an ideal of R.
b) Show that I_{1} is nilpotent.

Determine whether or not R is a semisimple ring and whether or not R is a left artinian ring.
c) Let $I_{2}=\left\{\left(\begin{array}{lll}0 & b & c \\ 0 & d & e \\ 0 & 0 & 0\end{array}\right): b, c, d, e \in \mathbb{F}\right\}$. You may assume that I_{2} is an ideal of R.

Determine whether or not R / I_{2} is a semisimple ring and whether or not R / I_{2} is a left artinian ring.
d) Is I_{2} a maximal ideal of R ? If not, find the maximal ideals of R containing I_{2}.

Problem 2 Let R be a ring and M an R-module. Prove that M is cyclic if and only if $M \cong{ }_{R} R / I$ for a left ideal I of R.

Problem 3

a) Find the Smith normal form of the matrix $\left(\begin{array}{lll}4 & 4 & 4 \\ 2 & 4 & 3 \\ 4 & 4 & 2\end{array}\right)$ over \mathbb{Z}.
b) Let A be an $n \times n$ matrix over a field \mathbb{F}. State without proof how the characteristic polynomial of A and the minimum polynomial 1 of A are related to the invariant factors of $A-x I$ over $\mathbb{F}[x]$.

Let A be a 6×6 matrix over \mathbb{Q} with minimum polynomial $\left(x^{2}-3 x+2\right)^{2}$. Find the possibilities for the invariant factors of $A-x I$ over $\mathbb{Q}[x]$ and compute the rational canonical form of A in one of the cases.

Problem $4 \quad$ Let R be a ring and let M and N be R-modules.
a) Let $\varphi: M \rightarrow N$ be an R-homomorphism. Give the definition of the kernel of φ and show that it is a submodule of M. Show that if φ has an inverse $\varphi^{-1}: N \rightarrow M$ then φ^{-1} is an R-homomorphism.
b) Suppose that M and N are simple R-modules. Prove that any R-homomorphism φ from M to N is either zero or an isomorphism.
Let $\operatorname{End}_{R}(M)$ be the ring of R-homomorphisms from M to M. Prove that $\operatorname{End}_{R}(M)$ is a division ring.
c) Let n be a positive integer. Show that there is a ring isomorphism

$$
\frac{\mathbb{Z}}{n \mathbb{Z}} \cong \operatorname{End}_{\mathbb{Z}}\left(\frac{\mathbb{Z}}{n \mathbb{Z}}\right)
$$

Prove that there is exactly one such ring isomorphism.
Prove that if n is not a prime number, then $\mathbb{Z} / n \mathbb{Z}$ is not a simple \mathbb{Z}-module.

[^0]
[^0]: ${ }^{1}$ The term minimal polynomial is used in the textbook for the course: Basic Abstract Algebra, by P. B. Bhattacharya, S. K. Jain and S. R. Nagpaul.

