Norwegian University of Science and Technology Department of Mathematical Sciences

Page 1 of 3

Contact during exam: Øyvind Solberg

Telephone: 73 59 17 48

EXAM IN RINGS AND MODULES (MA3201)

English
Friday 15th December 2006
Time: 09:00–13:00
Permitted aids: None

Grades: 15.01.2007.

Problem 1 Let A be the 3×3 matrix

$$\left(\begin{array}{rrr}1&2&-4\\1&2&2\\-1&1&1\end{array}\right)$$

over \mathbb{C} , the complex numbers.

- a) Find the Smith normal form of the matrix $A xI_3$ over the ring $\mathbb{C}[x]$, where $\mathbb{C}[x]$ is the polynomial ring in one variable x over \mathbb{C} and I_3 is the 3×3 identity matrix.
- b) Find the rational canonical form of the matrix A over \mathbb{C} .
- c) Find the Jordan canonical form of the matrix A over \mathbb{C} .

Problem 2 Let R and S be two rings. An abelian group M is called a S-R-bimodule if M is a left S-module and a right R-module, such that

$$s(mr) = (sm)r$$

for all s in S, for all r in R and for all m in M. Let

$$\Lambda = \begin{pmatrix} R & 0 \\ M & S \end{pmatrix}$$

where M is a S-R-bimodule different from (0). Let $\begin{pmatrix} r & 0 \\ m & s \end{pmatrix}$ and $\begin{pmatrix} r' & 0 \\ m' & s' \end{pmatrix}$ be two elements in Λ . The set Λ becomes an abelian group under the binary operation, +, given by

$$\left(\begin{smallmatrix} r & 0 \\ m & s \end{smallmatrix}\right) + \left(\begin{smallmatrix} r' & 0 \\ m' & s' \end{smallmatrix}\right) = \left(\begin{smallmatrix} r+r' & 0 \\ m+m' & s+s' \end{smallmatrix}\right).$$

Define a binary operation, \cdot , on Λ by letting

$$\left(\begin{smallmatrix}r&0\\m&s\end{smallmatrix}\right)\cdot\left(\begin{smallmatrix}r'&0\\m'&s'\end{smallmatrix}\right)=\left(\begin{smallmatrix}rr'&0\\mr'+sm'&ss'\end{smallmatrix}\right).$$

- a) Show that Λ is a ring with 1, when addition, +, and multiplication, \cdot , is defined as above.
- b) Find
 - (i) an idempotent element different from 0 and 1 in Λ ,
 - (ii) a nilpotent element different from 0 i Λ .
- c) Let $I = \{ \begin{pmatrix} 0 & 0 \\ m & 0 \end{pmatrix} \mid m \in M \}$. Show that I is a two-sided ideal in Λ . Show that $\Lambda/I \simeq R \oplus S$ as rings.

Problem 3 Let k be a field. The map $\varphi: k[x]/(x^2) \to k$ given by

$$\varphi(f(x) + (x^2)) = f(0)$$

is a homomorphism of rings. Let R = k and $S = k[x]/(x^2)$.

a) Let M be a left R-module. Show that M becomes a left S-module by defining

$$s \cdot m = \varphi(s)m$$

for all s in S and for all m in M.

b) Let $M=k^2=\{(a,b)\mid a,b\in k\}$. Then is M a left k-module by letting

$$\alpha(a,b) = (\alpha a, \alpha b)$$

and a right k-module by letting

$$(a,b)\alpha = (a\alpha,b\alpha)$$

for all α in k and for all (a,b) in M. With these module structures M becomes a k-k-bimodule (Do not need to show this). By a) we have that the left k-module M is a left S-module by letting $(f(x) + (x^2)) \cdot m = \varphi(f(x) + (x^2))m$. Show that M is a S-R-bimodule, when R = k and $S = k[x]/(x^2)$.

- c) Now let $\Lambda = \begin{pmatrix} R & 0 \\ M & S \end{pmatrix}$, where M is as in b), and Λ is a ring as given in Problem 2. Show that Λ is an algebra over k. What is $\dim_k \Lambda$? Decide if Λ is
 - (i) a left artinian ring,
 - (ii) a left noetherian ring,
 - (iii) a semisimple ring.
- d) Let J be the left ideal $\{\begin{pmatrix} 0 & 0 \\ (0,a) & bx+(x^2) \end{pmatrix} \mid a,b \in k\}$. Consider the left Λ -module $X = \Lambda/J$. Show that $f: X \to X$ given by

$$f(\lambda + J) = \lambda \begin{pmatrix} 0 & 0 \\ (0,0) & 1 + (x^2) \end{pmatrix} + J$$

is a Λ -homomorphism. Find the image $\operatorname{Im} f$ of f. Show that $X = \operatorname{Im} f \oplus Y$ for a submodule Y of X.